اینتل یک قطعه ابررسانا را به رایانه‌های کوانتومی اضافه کرد

اینتل یک قطعه ابررسانا را به رایانه‌های کوانتومی اضافه کرد

اینتل یک قطعه ابررسانا را به رایانه‌های کوانتومی اضافه کرد
علم فیزیک – اینتل یک قطعه ابررسانا را به رایانه‌های کوانتومی اضافه کرد

شرکت اینتل یک قطعه ابررسانا را برای رایانه‌های کوانتومی تولید کرده است.

به گزارش ایسنا و به نقل از انگجت، رایانه‌های کوانتومی نسل جدید رایانه‌ها هستند که می‌توانند در دنیای فناوری و رایانه انقلابی شگرف ایجاد کنند و در آینده‌ نه چندان دور در بازار به وفور دیده خواهند شد.

در حال حاضر شرکت‌های بزرگ فعال در این عرصه از جمله “آی.بی.ام”(IBM) تلاش‌های گسترده‌ای در تولید رایانه‌ها و پردازنده‌های کوانتومی را آغاز کرده‌اند.

در همین راستا آی.بی.ام در ماه مه از اولین پردازنده کوانتومی خود که با استفاده از شبکه تلفیقی الماس و سیلیکون تولید شده بود، رونمایی کرد.

گوگل از طرف دیگر در حال کار بر روی سرویس ابری رایانه‌های کوانتومی است و مایکروسافت نیز زبان برنامه‌نویسی آن را منتشر کرده است.

در کنار تمام این تلاش‌ها، اینتل نیز یک قدم بزرگ دیگر برداشته است و با استفاده از دانش مهندسی مواد پیشرفته یک قطعه ابررسانا برای رایانه‌های کوانتومی تولید کرده است و در اختیار شرکت “کیوتک”(QuTech)، شریک هلندی اینتل در زمینه رایانه‌های کوانتومی، قرار داده است.

بنا بر اعلام اینتل واحدهای داده‌ای در رایانه‌های کوانتومی موسوم به “کوبیت”(qubit) در دمایی ۲۵۰ برابر سردتر از دمای فضا کار می‌کنند و به همین دلیل بسیار حساس هستند و باید در محیط‌هایی قرار داشته باشند که از نابودی داده‌ها جلوگیری شود.

گروه‌های تحقیقاتی اینتل در آریزونا و اورگان آمریکا موفق شدند راهی برای تولید چیپ‌های ۱۷ کوبیتی بیابند که می‌توانند در دماهای بالا با ثبات بیشتری کار کنند.

این چیپ می‌تواند ۱۰ تا ۱۰۰ برابر نمونه‌های موجود ارسال و دریافت داده داشته باشد و می‌توان از آن برای ساخت چیپ‌های بزرگ‌تر نیز استفاده کرد.

قرار است شرکت کیوتک الگوریتم‌های محاسباتی متنوعی را بر روی این چیپ آزمایش کند و سرآغازی برای دوران محاسبات کوانتومی باشد.

رایانه کوانتومی ماشینی است که از پدیده‌ها و قوانین مکانیک کوانتوم مانند برهم نهی(Superposition) و درهم تنیدگی(Entanglement) برای انجام محاسباتش استفاده می‌کند.

رایانه‌های کوانتومی با رایانه‌های فعلی که با ترانزیستورها کار می‌کنند تفاوت اساسی دارند. ایده اصلی که در پس رایانه‌های کوانتومی نهفته است این است که می‌توان از خواص و قوانین فیزیک کوانتوم برای ذخیره‌سازی و انجام عملیات روی داده‌ها استفاده کرد. یک مدل تئوریک و انتزاعی از این ماشین‌ها، ماشین تورینگ کوانتومی(Quantum Turing Machine) است که رایانه‌ کوانتومی جهانی(Universal Quantum Computer) نیز نامیده می‌شود.

اگرچه محاسبات کوانتومی تازه در ابتدای راه قرار دارد، اما آزمایش‌هایی انجام شده که طی آنها عملیات محاسبات کوانتومی روی تعداد بسیار کمی از کوبیت‌ها اجرا شده است. تحقیقات نظری و عملی در این زمینه ادامه دارد و بسیاری از موسسات دولتی و نظامی از تحقیقات در زمینه رایانه‌های کوانتومی چه برای اهداف غیرنظامی و چه برای اهداف امنیتی مثل “تجزیه و تحلیل رمز”(Cryptanalysis) حمایت می‌کنند. اگر رایانه‌های کوانتومی در مقیاس بزرگ ساخته شوند، می‌توانند مسائل خاصی همچون “الگوریتم شُور”(Shor’s Algorithm) را با سرعت خیلی زیاد حل کنند. البته باید توجه داشت که توابعی که توسط رایانه‌های کلاسیک “محاسبه پذیر”(Computable) نیستند، توسط رایانه‌های کوانتومی نیز محاسبه پذیر نخواهند بود. این رایانه‌ها نظریه چرچ-تورینگ را رد نمی‌کنند. رایانه‌های کوانتومی فقط برای ما سرعت بیشتر را به ارمغان می‌آورند.

بین رایانه‌های کلاسیک و رایانه‌های کوانتومی نسل آینده تفاوت اساسی وجود دارد. یک رایانه‌ کلاسیک براساس قوانین فیزیک کلاسیک دستورات از پیش تعیین شده‌ای را اجرا می‌کند، اما یک رایانه‌ کوانتومی دستگاهی است که یک پدیده فیزیکی را بر اساس مکانیک کوانتومی به صورت منحصربه‌فردی درمی‌آورد تا به صورت اساسی یک حالت جدید از پردازش اطلاعات را تشخیص دهد.

در یک رایانه‌ معمولی اطلاعات به صورت یک سری بیت کدگذاری می‌شوند و این بیت‌ها از طریق گیت‌های منطقی بولین که سری هستند برای نتیجه نهایی دستکاری می‌شوند به طور مشابه یک رایانه‌ کوانتومی، کوبیت‌ها یا بیت‌های کوانتومی را با اجرای یکی از گیت‌های کوانتومی دستکاری می‌کند و هر واحد انتقال بر روی یک تک کوبیت یا یک جفت کوبیت عمل می‌کند. با به کار بردن این کمیت‌های متوالی یک رایانه‌ کوانتومی می‌تواند یک واحد انتقال پیچیده از طریق مجموعه‌ای از کوبیت‌ها در بعضی حالات ابتدایی ایجاد کند.

پیشبرد پروژه ایجاد رایانه‌های کوانتومی در یک رایانه کوانتومی به جای استفاده از ترانزیستورها و مدارهای رایانه‌ای معمولی از اتم‌ها و سایر ذرات ریز برای پردازش اطلاعات استفاده می‌شود. یک اتم می‌تواند به عنوان یک بیت حافظه در رایانه عمل کند و جابجایی اطلاعات از یک محل به محل دیگر نیز توسط نور امکان می‌پذیرد.

گروهی از محققان در دانشگاه میشیگان برای ذخیره اطلاعات با استفاده از حالت مغناطیسی اتم از یک اتم کادمیم به دام افتاده در میدان الکتریکی استفاده کردند. در این روش انرژی توسط یک لیزر به درون اتم پمپاژ شده و اتم وادار به گسیل فوتونی می‌شود که رونوشتی از اطلاعات اتم را دربردارد و توسط آشکارساز قابل تشخیص است.

ذخیره اطلاعات در رایانه‌ها به صورت سری‌هایی از بیت‌های با حالت‌های روشن و خاموش صورت می‌گیرد. در اتم کادمیم در صورتی که میدان‌های مغناطیسی کوچک هسته و الکترون‌های بیرونی در یک جهت قرار بگیرند روشن و در خلاف جهت خاموش محسوب می‌شوند. محققان بر این باورند که اتم کادمیم در هریک از این حالات که باشد می‌تواند هزاران سال در همان حالت بماند.

اینتل یک قطعه ابررسانا ، اخبارفیزیک ، مقالات فیزیک ، مطالب فیزیک ، فیزیک مدرن ، علم فیزیک

آمپر متر چیست؟

آمپر متر چیست؟

ریشه لغوی

لغت ammeter از کلمه amper مشتق شده است. توجه کنید که حرف P در کلمه amper حذف شده است و فقط دو حرف اول این کلمه در لغت ammeter بکار رفته است.

ما نمی‌توانیم الکترونها یا پروتونها را دیده یا لمس کنیم. به همین دلیل نمی‌توانیم آنها را بشماریم. در نتیجه به ابزاری احتیاج داریم تا بتوانیم آنها را بشماریم. شدت روشنایی لامپ مشخصاتی از شدت جریان را به ما نشان می‌دهد، ولی دو نقص اصلی دارد. اول اینکه نمی‌تواند شدت جریان را در واحدی که به آسانی قابل یادداشت و مقایسه با اندازه گیری شدت جریان در محلها و زمانهای دیگر است، اندازه بگیرد. همچنین در شدت جریانهای معین می‌توان از آن استفاده کرد. اگر مقدار شدت جریان خیلی کم باشد، لامپ روشن نمی‌شود و اگر شدت جریان خیلی زیاد باشد، لامپ می‌سوزد. برای رفع نقص اول به ابزاری احتیاج داریم که به ما نشان دهد، چند آمپر (چند کولن الکترون در هر ثانیه) در مدار جریان دارد. دستگاه مخصوصی که این اندازه گیری را انجام می‌دهد، آمپرمتر (ammetr) نامیده می‌شود.

طرز کار آمپرمتر

آمپرمتر مقدار شدت جریانی را که از آن می‌گذرد، بوسیله یک عقربه که در روی صفحه درجه بندی شده حرکت می‌کند، نشان می‌دهد. میزان انحراف عقربه آمپرمتر با تعداد الکترونهایی که از این دستگاه می‌گذرند، نسبت مستقیم دارد. یعنی نشان می‌دهد که چه مقدار بار الکتریکی در ثانیه از آن عبور می‌کند.

طرز استفاده از آمپرمتر

آمپرمتر از خیلی جهات شبیه کنتور آب است که میزان آب مصرف شده منازل را اندازه می‌گیرد. هر دو دستگاه (آمپرمتر و کنتور آب) باید طوری در مدار قرار گیرند که جریانهای الکتریسیته و آب از آنها بگذرد، تا بتوان شدت جریان را اندازه گرفت. تمام آبی که از لوله اصلی وارد خانه می‌شود، باید از کنتور آب عبور کند. آمپرمتر نیز باید طوری قرار گیرد که تمام جریان الکتریسته از ان بگذرد، تا بتوان تمام شدت جریان الکتریکی را بوسیله آن اندازه گرفت. این نوع اتصال را اتصال متوالی یا سری می‌گویند. یعنی اجزا تشکیل دهنده مدار در یک خط مستقیم (یک مسیر هدایت کننده) به یکدیگر اتصال دارند.

مراحل قرار دادن آمپرمتر در مدار

برای قرار دادن آمپرمتر در مدار متوالی به ترتیب زیر عمل کنید.

۱٫ نیروی خارجی را که به مدار وارد می‌شود، قطع کنید.

۲٫ آن قسمت از مدار را که آمپرمتر در آن قرار دارد، باز کنید یا ببرید.

۳٫ انتهای مثبت آمپرمتر را به سیمی که به قطب مثبت پیل می‌رود، وصل کنید.

۴٫ انتهای منفی آمپرمتر را به سیمی که به قطب منفی پیل می‌رود، وصل کنید.

مراحل ۴ , ۳ (که عبارتند از انتقال مثبت به مثبت ، منفی به منفی) را دقت در پلاریته می‌نامند و این امر مهم است. زیرا دستگاه اندازه گیری آمپرمتر شدت جریان را در یک جهت نشان می‌دهد. اگر دستگاه اندازه گیری را بطور عکس در مدار قرار دهیم، چون جریان در جهت عکس (که مناسب آمپرمتر نیست) از آن می‌گذرد و انحراف عقربه بوجود می‌آید که باعث شکسته شدن یا خم شدن آن می‌گردد. فیش قرمز را به جک قرمز آمپرمتر و فیش سیاه را به جک سیاه در بالای آمپرمتر وصل کنید.

خطای دستگاه اندازه گیری (Meter Tolrances)

باید توجه داشت که در یک مدار معین آمپرمترهای مختلف ، اندازه شدت جریان را با کمی اختلاف نشان می‌دهند. این امر بدان دلیل است که مقداری از انرژی که در مدار جریان دارد، برای بکار انداختن آمپرمتر مصرف می‌شود و همه آمپرمترها هم یکسان نیستند. همچنین به علت اختلافی که در ساختمان آمپرمتر و تلف شدن انرژی وجود دارد، شدت جریانی را که در روی آمپرمتر می‌خوانید، تقریبی است. دستگاه اندازه گیری درست است که حدود خطای آن ۰± در صد اندازه واقعی باشد. یعنی اگر شدت جریان اصلی ۱۰۰ آمپر باشد، روی دستگاه آمپرمتر حدود ۹ تا ۱۰ آمپر را می‌خوانید.

بکار بردن آمپرمتر

۱٫ یک آمپرمتر ساده را بردارید. در انتخاب دستگاه اندازه گیری دقت کنید که شدت جریان مدار نباید بیش از حد تعیین شده برای اندازه گیری باشد. زیرا آمپرمتر بر حسب درجه بندی خود ، شدت جریانهای معینی را می‌تواند اندازه بگیرد. در مورد این آزمایش می‌توانید فرض کنید که آمپرمتر دارای توانایی کافی برای اندازه گیری شدت جریان می‌باشد.

۲٫ فیش قرمز را به جک قرمز و فیش سیاه را به جک سیاه وصل کنید.

۳٫ مطمئن شوید که به مدار انرژی داده نمی‌شود. کلید مدار باید باز باشد (به خاطر حفظ جان خود هیچگاه سعی نکنید که آمپرمتر را در مداری که انرژی الکتریکی در آن جریان دارد قرار دهید).

۴٫ با جدا کردن سیم رابط بین T2 و T1 مدار را باز کنید. با قرار گرفتن آمپرمتر بین این دو نقطه مدار کامل می‌شود.

۵٫ با رعایت پلاریته ، فیش سیاه را به T1 و فیش قرمز را به T2 وصل کنید. اگر پلاریته مناسب در نظر گرفته نشود، عقربه آمپرمتر به طرف چپ منحرف شده و این عمل موجب خرابی دستگاه اندازه گیری خواهد شد.

۶٫ کلید مدار را ببندید و درجه‌ای را که آمپرمتر نشان می‌دهد بخوانید. همیشه از روبرو به صفحه درجه بندی شده آمپرمتر نگاه کنید و هیچوقت تحت هیچ زاویه‌ای درجه آمپرمتر را نخوانید.

۷٫ درجه‌ای را که خوانده‌اید، یادداشت کنید.

۸٫ کلید مدار را باز کنید.

منبع : دانشنامه رشد

الکترواستاتیک

الکترواستاتیک

الکترواستاتیک به شاخه‌ای از علم فیزیک گویند که به مطالعه بارهای الکتریکی در حالت بدون حرکت (سکون) می‌پردازد.

الکترو استاتیک الکترو استاتیک شاخه‌ای از دانش است که با پدیده‌هایی سر و کار دارد که از بارهای الکتریکی ساکن یا دارای حرکت آهسته ناشی می‌شوند. از زمان باستان دانسته شده بود که برخی از مواد، مانند کهربا، پس از مالیده شدن، مواد و ذرات سبک را جذب می‌کنند. واژهٔ یونانی برای کهربا (ήλεκτρον یا همان electron) سرچشمهٔ پیدایش واژهٔ electricity شد. پدیده‌های الکترو استاتیک از نیروهایی ناشی می‌شوند که بارهای الکتریکی بر هم وارد می‌کنند. این نیروها به وسیلهٔ «قانون کولمب» توصیف می‌شوند. اگرچه ممکن است نیروهای القا شده بر اثر الکترو استاتیک به نظر ضعیف بیایند، اما به عنوان نمونه، نیروی الکترو استاتیکی بین یک الکترون و یک پروتون، که با یکدیگر یک اتم هیدروژن را تشکیل می‌دهند، در حدود ۴۰ مرتبه از نیروی گرانشی بین آنها بزرگ‌تر است.

پدیده‌های الکترو استاتیکی مثال‌های متعددی دارند که مواردی مانند چسبیدن پوشش‌های پلاستیکی به دست پس از جدا کردن آنها از بسته‌بندی، انفجار ظاهراً خودبخودی سیلوی غلّات، آسیب وارده به قطعات الکترونیکی در هنگام ساخت، و عملکرد دستگاه‌های فوتوکپی را در بر می‌گیرد. الکترو استاتیک شامل تجمع بار الکتریکی بر سطح اشیا است که بر اثر تماس با اشیای دیگر صورت می‌گیرد. اگر چه تبادل بار الکتریکی، هر بار که دو جسم با هم تماس یافته و از هم جدا می‌شوند صورت می‌گیرد، اثرات این تبادل بار معمولاً تنها زمانی قابل مشاهده‌اند که حداقل یکی از سطوح دارای مقاومت بالایی در برابر جریان الکتریکی باشد. این به این دلیل است که بارهایی‌که به/از یک سطح دارای مقاومت الکتریکی بالا منتقل می‌شوند کم و بیش برای مدت زمانی در آنجا می‌مانند که برای مشاهدهٔ اثرات آنها به اندازهٔ کافی طولانی است. این بارها زمانی از روی سطح جابجا می‌شوند که یا به زمین راه پیدا کرده و یا با یک دشارژ سریع خنثی شوند. به عنوان نمونه‌ای از دشارژ، می‌توان پدیدهٔ آشنای «شوک» استاتیک را نام برد که هنگامی رخ می‌دهد که بار جمع شده در بدن بر اثر تماس با سطوح نارسانا، خنثی شود.

Paper shavings attracted by a charged CD

مفاهیم پایه‌ای

قانون کولمب (به مرور زمان و برای راحتی بیان از کولمب به کولن تغییر یافته‌است) معادلهٔ پایهٔ الکترو استاتیک، قانون کولمب است که نیروی بین دو «بار نقطه‌ای» را توصیف می‌کند. اندازهٔ نیروی الکترومغناطیسی بین دو بار الکتریکی نقطه‌ای با حاصلضرب اندازهٔ بارها نسبت مستقیم، و با مربع فاصلهٔ بین دو بار نسبت معکوس دارد:

F = \frac{Q_1Q_2}{4\pi\varepsilon_0 r^2}\,

در رابطهٔ بالا، Q۱ و Q۲ اندازهٔ بارها و r فاصلهٔ بین دو بار بوده و ε۰ ثابتی است که‌«گذردهی‌فضای‌آزاد» نامیده می‌شود، و طبق تعریف برابر است با:

 \varepsilon_0 \ \stackrel{\mathrm{def}}{=}\ \frac {1}{\mu_0 {c_0}^2} = 8.854\ 187\ 817\ \times 10^{-12}   in A2s4 kg-1m-3 or C2N−۱m−۲ or F m−۱.

میدان الکتریکی

میدان الکتریکی (دارای واحد ولت بر متر) در یک نقطه به صورت نیرو (بر حسب نیوتون) بر واحد بار (بر حسب کولمب) بر یک بار موجود در آن نقطه تعریف می‌شود.

\vec{F} = q\vec{E}.\,

با توجه به این تعریف و قانون کولمب، نتیجه‌گیری می‌شود که اندازهٔ میدان الکتریکیE که به وسیلهٔ یک بار نقطه‌ای تنها، Q، ایجاد می‌شود از این رابطه به دست می‌آید:

E(\vec r) = \frac{Q}{4\pi\varepsilon_0 r^2}.

قانون گاوس

قانون گاوس بیان می‌کند که «شار کلّی الکتریکی که از درون یک سطح بسته می‌گذرد با بار کلی الکتریکی که به وسیلهٔ سطح در بر گرفته می‌شود متناسب است». به بیان ریاضی، قانون گاوس شکل یک معادلهٔ انتگرالی را به خود می‌گیرد:

\oint_S\varepsilon_0\vec{E} \cdot\mathrm{d}\vec{A} =  \int_V\rho\cdot\mathrm{d}V.

به یک صورت دیگر، به فرم دیفرانسیل، معادله به این صورت در می‌آید:

\vec{\nabla}\cdot\varepsilon_0\vec{E} = \rho.

در رابطهٔ بالا،\vec{\nabla} \cdotعملگر دیورژانس است.

معادلهٔ پواسون

با ترکیب تعریف پتانسیل الکترواستاتیک با فرم دیفرانسیلی قانون گاوس، رابطه‌ای بین پتانسیل φ و چگالی بار ρ به دست می‌آید:

{\nabla}^2 \phi = - {\rho\over\varepsilon_0}.

این رابطه، صورتی از معادلهٔ پواسون است. در این رابطه، ε۰ گذردهی خلأ است. معادلهٔ لاپلاس در غیاب بار الکتریکی، معادله به این صورت در می‌آید:

{\nabla}^2 \phi = 0,

به این معادله، معادلهٔ لاپلاس گفته می‌شود.

تقریب الکترو استاتیکی

اعتبار تقریب الکترواستاتیک بودن بر این فرض استوار است که میدان الکتریکی، «غیر چرخشی» است:

\vec{\nabla}\times\vec{E} = 0.

با توجه به قانون فاراده، این فرض متضمّن عدم وجود (یا عدم وجود تقریبی) میدان مغناطیسی متغیر با زمان است:

{\partial\vec{B}\over\partial t} = 0.

به بیان دیگر، تقریب الکترواستاتیک بودن نیاز ندارد که میدان مغناطیسی یا جریان الکتریکی وجود نداشته باشد، بلکه اگر میدان مغناطیسی یا جریان الکتریکی وجود داشته باشد، باید با زمان تغییر نکند، یا در بدترین حالت، باید تغییرات آن با زمان بسیار کند باشد. در برخی از مسائل، برای پیش‌بینی دقیق هم به الکترو استاتیک و هم به مگنتو استاتیک نیاز است. اما در این حالت می‌توان از تزویج بین این دو چشم‌پوشی کرد.

پتانسیل الکترو استاتیک

از آنجا که میدان الکتریکی در مباحث مربوط به الکترواستاتیک، غیر چرخشی است، می‌توان میدان الکتریکی را به صورت گرادیان یک تابع اسکالر در نظر گرفت. به این تابع، پتانسیل الکترواستاتیک (که با نام ولتاژ هم شناخته می‌شود) گفته می‌شود. جهت یک میدان الکتریکی،، از نقاط دارای‌پتانسیل،، بالا به نقاط دارای پتانسیل پایین است. این واقعیت به صورت ریاضی به این شکل نشان داده می‌شود:

\vec{E} = -\vec{\nabla}\phi.

پتانسیل الکترواستاتیک در یک نقطه را می‌توان به صورت مقدار کار بر واحد شارژ که لازم است انجام شود تا بار الکتریکی از نقطه‌ای واقع در بی‌نهایت به آن نقطه آورده شود تعریف کرد.

سری‌های تریبو الکتریک

اثر تریبو الکتریک ” نوعی از باردار شدن الکتریکی بر اثر تماس است که در آن، برخی از مواد هنگامی‌که با مادهٔ دیگری تماس یافته و سپس از آن جدا می‌شوند، دارای بار الکتریکی می‌شوند. یکی از مواد دارای بار مثبت شده و دیگری باری منفی با همان اندازهٔ بار مثبت مادهٔ دیگر خواهد داشت. قطبیت و میزان بارهای تولید شده بسته به جنس مواد، ناهمواری سطح، دما، کرنش، و سایر مشخصات تغییر می‌کنند. به عنوان مثال، کهربا می‌تواند بر اثر اصطکاک با ماده‌ای مانند پشم دارای بار الکتریکی شود. این ویژگی، که برای نخستین بار به وسیلهٔ تالس ثبت شد، نخستین پدیدهٔ الکتریکی بود که به وسیلهٔ بشر مورد بررسی قرار گرفت. نمونه‌هایی از مواد دیگر که وقتی به هم مالیده شوند می‌توانند دارای بار قابل ملاحظه‌ای شوند عبارتند از شیشه‌ای که با ابریشم مالیده شود، و لاستیک سفتی که با خز مالیده شود.

مولدهای الکترو استاتیک

وجود عدم تعادل در بار سطحی به این معنی است که اشیا، نیروهای جاذبه یا دافعه از خود نشان می‌دهند. این عدم تعادل بار سطحی، که الکتریستهٔ ساکن تولید می‌کند، می‌تواند به وسیلهٔ تماس و سپس جدایش دو سطح با جنس مختلف، بر اثر پدیدهٔ باردار شدن الکتریکی تماسی و اثر تریبو الکتریک تولید شود. مالش دو جسم نارسانا مقدار زیادی الکتریستهٔ ساکن تولید می‌کند. این تنها بر اثر اصطکاک نیست؛ دو سطح نارسانا را می‌توان تنها با قرار دادن روی هم دارای بار الکتریکی کرد. از آنجا که بیشتر سطوح، ناهموار هستند، باردار شدن الکتریکی از راه تماس نسبت به مالش زمان بیشتری می‌برد. مالش دو جسم به هم مقدار تماس چسبنده را بین آن دو افزایش می‌دهد. معمولاً نارساناها، یعنی موادی که الکتریسیته را هدایت نمی‌کنند، بار سطحی را هم خوب تولید کرده و هم خوب نگه می‌دارند. مثال‌هایی از این مواد عبارتند از لاستیک، پلاستیک، شیشه، و مادهٔ سفید رنگ موجود در پوست پرتقال. مواد رسانا، به جز مواردی که مثلاً یک سطح فلزی به وسیلهٔ نارساناهای جامد یا مایع تحت تأثیر قرار می‌گیرد، به ندرت عدم تعادل بار الکتریکی ایجاد می‌کنند. باری که هنگام باردار شدن الکتریکی منتقل می‌شود، بر روی سطح جسم ذخیره می‌شود. مولدهای الکتریسیتهٔ ساکن، دستگاه‌هایی‌که ولتاژهای خیلی بالا در جریان خیلی پایین تولید کرده و برای نمایش پدیدهٔ الکترو استاتیک در کلاس درس مورد استفاده قرار می‌گیرند، بر این اثر تکیه دارند. توجه کنید که وجود جریان الکتریکی نه از نیروهای الکترو استاتیک و نه از جرقه زدن، تخلیهٔ کرونا، و پدیده‌های دیگر جلوگیری نمی‌کند. هر یک از این پدیده‌ها می‌توانند هم‌زمان با جریان الکتریکی در یک سیستم وجود داشته باشند.

خنثی‌سازی بار

آشناترین شکل پدیده‌های الکترو استاتیک طبیعی، ایجاد اذیت برای انسان در فصول دارای رطوبت کم است. اما این پدیده‌ها می‌توانند در برخی از شرایط، مخرب و مضر باشند (مانند ساخت قطعات الکترونیکی). هنگام کار در تماس مستقیم با مدارهای مجتمع الکترونیکی (به ویژهMOSFETهای ظریف)، یا در حضور گازهای قابل اشتعال، باید احتیاط شود که از ذخیره شدن و سپس تخلیهٔ ناگهانی بار الکتریکی ساکن جلوگیری شود.

القای بار

القای بار هنگامی اتفاق می‌افتد که یک جسم دارای بار منفی سبب رانش الکترون‌ها از سطح جسم دیگری می‌شود. این امر ناحیه‌ای در جسم دوم ایجاد می‌کند که دارای بار مثبت‌تری است. سپس یک نیروی جاذبه بین دو جسم اعمال می‌شود. برای نمونه، هنگامی که یک بادکنک مالش داده می‌شود، در نتیجهٔ ایجاد نیروی جاذبه بین دو سطح (بادکنک و دیوار) که دارای بارهای الکتریکی مخالف هستند، بادکنک به دیوار می‌چسبد (سطح دیوار به دلیل القای بار دارای بار الکتریکی می‌شود. این امر به این ترتیب اتفاق می‌افتد که الکترون‌های آزاد موجود بر سطح دیوار به وسیلهٔ بادکنک دارای بار منفی رانده می‌شوند و به این ترتیب سطح دیوار دارای بار مثبت می‌شود که به سطح بادکنک که دارای بار منفی است نیروی جاذبه اعمال می‌کند).

الکتریسیتهٔ ساکن

نوشتار اصلی: Static electricity

پیش از سال ۱۸۳۲، که در آن مایکل فاراده نتایج آزمایش خود در زمینهٔ ماهیت الکترونیک را منتشر کرد، فیزیکدان‌ها تصور می‌کردند که «الکتریسیتهٔ ساکن» با سایر بارهای الکتریکی تفاوت دارد. مایکل فاراده ثابت کرد که الکتریسیتهٔ القا شده به وسیلهٔ آهن‌ربا، الکتریسیتهٔ ولتاییک تولید شده به وسیلهٔ باتری، و الکتریسیتهٔ ساکن همگی یکسان هستند. الکتریسیتهٔ ساکن معمولاً هنگامی ایجاد می‌شود که مواد خاصی، مانند پشم و پلاستیک، و یا کف کفش و قالی، به یکدیگر مالیده شوند. این فرایند سبب می‌شود که الکترون‌ها از سطح یک ماده کشیده شده و بر روی سطح مادهٔ دیگر قرار گیرند. یک شوک استاتیک زمانی اتفاق می‌افتد که سطح مادهٔ دوم، که به سبب الکترون‌ها دارای بار منفی شده‌است، با سطح یک مادهٔ رسانای دارای بار مثبت تماس یابد، یا بر عکس. از الکتریسیتهٔ ساکن در فتوکپی، فیلترهای هوا، و برخی از رنگ‌های اتومبیل استفاده می‌شود. الکتریسیتهٔ ساکن نتیجهٔ ایجاد بار بر روی دو سطحی است که از هم جدا شده‌اند. برخی از قطعات الکتریکی ممکن است بر اثر الکتریسیتهٔ ساکن به سادگی آسیب ببینند. برای جلوگیری از این امر، سازندگان قطعات از برخی از وسایل ضد الکتریسیتهٔ ساکن استفاده می‌کنند.

الکتریسیتهٔ ساکن در صنعت شیمی

وقتی دو جسم مختلف با هم تماس یافته و از هم جدا شوند، ممکن است تجمعی از بارهای الکتریکی رخ دهد که سبب می‌شود یکی از مواد دارای بار مثبت و دیگری دارای بار منفی شود. شوک الکتریکی خفیفی‌که پس از لمس یک جسم دارای اتصال به زمین، در حال راه رفتن روی فرش، به انسان وارد می‌شود نمونه‌ای است از بار الکتریکی اضافی که بر اثر اصطکاک بین کفش انسان و فرش به بدن انسان منتقل می‌شود. انتقال بار به بدن ممکن است سبب تخلیهٔ الکتریکی شدیدی شود. اگرچه آزمایش الکتریسیتهٔ ساکن ممکن است جالب باشد، در صنایعی که با مواد قابل اشتعال سر و کار دارند، جرقه ممکن است سبب خطراتی جدی شود. در چنین صنایعی، یک جرقهٔ الکتریکی‌کوچک می‌تواند سبب اشتعال مخلوط‌های قابل انفجار شده و نتایج مخربی به بار آورد. در سیالات دارای رسانایی پایین الکتریکی هم که در لوله‌ها جریان دارند، یک مکانیزم مشابه باردار شدن الکتریکی ممکن است رخ دهد. این فرایند، باردار شدن الکتریکی جریان نام دارد. سیالات دارای رسانایی پایین الکتریکی (کمتر از ۵۰ پیکو زیمنس بر متر، که‌در آن پیکو زیمنس بر متر واحد رسانایی الکتریکی‌است) «انباره» نامیده می‌شوند. سیالات دارای رسانایی بالایpS/m ۵۰، غیر انباره نامیده می‌شوند. در غیر انباره‌ها، بارها با همان سرعتی که از هم جدا می‌شوند با هم باز ترکیب می‌شوند و بنابراین تولید بار الکترو استاتیک قابل توجه نیست. در صنعت پتروشیمی، pS/m ۵۰ مقدار پیشنهادی برای حداقل رسانایی سیال است که برای بارزدایی کافی از سیال مناسب است. یک مفهوم مهم در سیالات نارسانا، «زمان آرامش استاتیک» است. این زمان، مشابه ثابت زمانی (τ) در یک مدار RC است. برای مواد نارسانا، این پارامتر برابر نسبت ثابت دی الکتریک استاتیک تقسیم بر رسانایی ماده‌است. برای سیالات هیدرو کربنی، این عدد گاهی به صورت تقریبی با تقسیم عدد ۱۸ بر رسانایی ماده به دست می‌آید. پس سیالی که دارای رسانایی الکتریکی pS/cm ۱ (pS/m 100) است دارای زمان آرامشی تقریباً برابر با ۱۸ ثانیه خواهد بود. بار اضافی موجود در سیال در طی زمانی تقریباً ۴ تا ۵ برابر زمان آرامش، ۹۰ ثانیه برای سیال فرضی ما، کاملاً محو خواهد شد. در سرعت‌های بالاتر سیال و قطرهای بالاتر لولهٔ حامل سیال، تولید بار افزایش می‌یابد و در لوله‌های دارای قطر ۸ اینچ (cm 20) و بیشتر، تولید بار قابل توجه‌است. بهترین راه کنترل تولید بار استاتیک در این سیستم‌ها، محدود کردن سرعت سیال است. استاندارد بریتانیایی

BS PD CLC/TR ۵۰۴۰۴:۲۰۰۳ Code of Practice for Control of Undesirable Static Electricity    

حدود سرعت را تعیین می‌کند. به دلیل اثر بزرگ آب بر ثابت دی الکتریک، سرعت پیشنهادی برای سیالات هیدرو کربنی حاوی آب به m/s ۱ محدود می‌شود. اتصال و زمین کردن، راه‌های متداولی هستند که می‌توان به وسیلهٔ آن‌ها از تجمع بار جلوگیری کرد. برای سیالات دارای رسانایی الکتریکی کمتر از pS/m ۱۰، این تمهیدات کافی نبوده و استفاده از افزودنی‌های ضد الکتریسیتهٔ ساکن هم ممکن است لازم باشد.

ترانسفورماتور Transformer

ترانسفورماتور (Transformer)

ترانسفورماتور (Transformer) وسیله‌ای است که انرژی الکتریکی را به وسیله دو یا چند سیم‌پیچ و از طریق القای الکتریکی از یک مدار به مداری دیگر منتقل می‌کند. به این صورت که جریان جاری در مدار اول (اولیه ترانسفورماتور) موجب به وجود آمدن یک میدان مغناطیسی در اطراف سیم‌پیچ اول می‌شود، این میدان مغناطیسی به نوبه خود موجب به وجود آمدن یک ولتاژ در مدار دوم می‌شود که با اضافه کردن یک بار به مدار دوم این ولتاژ می‌تواند به ایجاد یک جریان در ثانویه بینجامد.

ولتاژ القا شده در ثانویه VS و ولتاژ دو سر سیم‌پیچ اولیه VP دارای یک نسبت با یکدیگرند که به طور آرمانی برابر نسبت تعداد دور سیم پیچ ثانویه به سیم‌پیچ اولیه‌است:

 \frac{V_{S}}{V_{P}} = \frac{N_{S}}{N_{P}}

به این ترتیب با اختصاص دادن امکان تنظیم تعداد سیم‌پیچ‌های ترانسفورماتور، می‌توان امکان تغییر ولتاژ در ثانویه ترانس را فراهم کرد.

یکی از کاربردهای بسیار مهم ترانسفورماتورهای کاهش جریان پیش از خطوط انتقال انرژی الکتریکی است. دلیل استفاده از ترانسفورماتور در ابتدای خطوط این است که همه هادی‌های الکتریکی دارای میزان مشخصی مقاومت الکتریکی هستند، این مقاومت می‌تواند موجب اتلاف انرژی در طول مسیر انتقال انرژی الکتریکی شود. میزان تلفات در یک هادی با مجذور جریان عبوری از هادی رابطه مستقیم دارد و بنابر این با کاهش جریان می‌توان تلفات را به شدت کاهش داد. با افزایش ولتاژ در خطوط انتقال به همان نسبت جریان خطوط کاهش می‌یابد و به این ترتیب هزینه‌های انتقال انرژی نیز کاهش می‌یابد، البته با نزدیک شدن خطوط انتقال به مراکز مصرف برای بالا بردن ایمنی ولتاژ خطوط در چند مرحله و باز به وسیله ترانسفورماتورها کاهش می‌یابد تا به میزان استاندارد مصرف برسد. به این ترتیب بدون استفاده از ترانسفورماتورها امکان استفاده از منابع دوردست انرژی فراهم نمی‌آمد.

ترانسفورماتورها یکی از پربازده‌ترین تجهیزات الکتریکی هستند به طوری که در برخی ترانسفورماتورهای بزرگ بازده به ۹۹.۷۵٪ نیز می‌رسد. امروزه از ترانسفورماتورها در اندازه‌ها و توان‌های مختلفی استفاده می‌شود از یک ترانسفورماتور بند انگشتی که در یک میکروفن قرار دارد تا ترانسفورماتورهای غول‌پیکر چند گیگا ولت-آمپری. همه این ترانسفورماتورها اصول کار یکسانی دارند اما در طراحی و ساخت متفاوت هستند.

اصول پایه

به طور کلی یک ترانسفورماتور بر دو اصل استوار است:

  • اول اینکه، جریان الکتریکی متناوب می‌تواند یک میدان مغناطیسی متغییر پدید آورد (الکترومغناطیس)
  • و دوم اینکه، یک میدان مغناطیسی متغییر در داخل یک حلقه سیم‌پیچ می‌تواند موجب به وجود آمدن یک جریان الکتریکی متناوب در یک سیم سیم‌پیچ شود.

ساده‌ترین طراحی برای یک ترانسفورماتور در شکل ۲ آمده‌است. جریان جاری در سیم‌پیچ اولیه موجب به وجود آمدن یک میدان مغناطیسی می‌گردد. هر دو سیم‌پیچ اولیه و ثانویه بر روی یک هسته که دارای خاصیتنفوذپذیری مغناطیسی بالایی است (مانند آهن) پیچیده شده‌اند. بالا بودن نفوذپذیری هسته موجب می‌شود تا بیشتر میدان تولید شده توسط سیم‌پیچ اولیه از داخل هسته عبور کرده و به سیم‌پیچ ثانویه برسد.

قانون القا

میزان ولتاژ القا شده در سیم‌پیچ ثانویه را می‌توان به وسیله قانون فاراده به دست آورد:

 V_{S} = N_{S} \frac{d\Phi}{dt}

در فرمول بالا VS ولتاژ لحظه‌ای, NS تعداد دورهای سیم‌پیچ در ثانویه و Φ برابر مجموع شار مغناطیسی است که از یک دور از سیم‌پیچ می‌گذرد. با توجه به این فرمول تا زمانی که شار در حال تغییر از دو سیم پیچ اولیه و ثانویه عبور کند ولتاژ لحظه‌ای در اولیه یک ترانسفورماتور آرمانی از فرمول زیر بدست می‌آید:

 V_{P} = N_{P} \frac{d\Phi}{dt}

و با توجه به تعداد دور سیم‌پیچ‌های اولیه و ثانویه و این معادله ساده می‌توان میزان ولتاژ القایی در ثانویه را بدست آورد:

 \frac{V_{S}}{V_{P}} = \frac{N_{S}}{N_{P}}

شکل-۲ یک ترانسفورماتور کاهنده آرمانی و مسیر عبور شار در هسته

معادله ایده‌ال توان

اگر سیم‌پیچ ثانویه به یک بار متصل شده باشد جریان در سیم‌پیچ ثانویه جاری خواهد شد و به این ترتیب توان الکتریکی بین دو سیم‌پیچ منتقل می‌شود. به طور ایده‌آل ترانسفورماتور باید کاملاً بدون تلفات کار کند و تمام توانی که به ورودی وارد می‌شود به خروجی برسد وبه این ترتیب توان ورودی و خروجی باید برابر باشد و در این حالت داریم:

Pincoming = IPVP = Poutgoing = ISVS

و همچنین در حالت ایده‌آل خواهیم داشت:

 \frac{V_{S}}{V_{P}} = \frac{N_{S}}{N_{P}} = \frac{I_{P}}{I_{S}}

بنابر این اگر ولتاژ ثانویه از اولیه بزرگتر باشد جریان ثانویه باید به‌همان نسبت از جریان اولیه کوچکتر باشد. همانطور که در بالا اشاره شد در واقع بیشتر ترانسفورماتورها بازده بسیار بالایی دارند و به این ترتیب نتایج به دست آمده از این معادلات به مقادیر واقعی بسیار نزدیک خواهد بود.

مبحث فنی

تعاریف ساده شده بالا از بسیاری از مباحث پیچیده درباره ترانسفورماتورها گذشته‌است.

در یک ترانسفورماتور آرمانی، ترانسفورماتور دارای یک هسته بدون مقاومت مغناطیسی و دو سیم‌پیچ بدون مقاومت الکتریکی است. زمانی که ولتاژ به ورودی‌های اولیه ترانسفورماتور اعمال می‌شود برای به وجود آمدن شار در مدار مغناطیسی هسته، جریانی کوچکی در سیم‌پیچ اولیه جاری می‌شود. از آنجایی که در ترانسفورماتور ایده‌آل هسته فاقد مقاومت مغناطیسی است این جریان قابل چشم پوشی خواهد بود در حالی که در یک ترانسفورماتور واقعی این جریان بخشی از تلفات ترانسفورماتور را تشکیل خواهد داد.

شار پراکندگی

در یک ترانسفورماتور آرمانی شار مغناطیسی تولید توسط سیم‌پیچ اول به طور کامل توسط سیم‌پیچ دوم جذب می‌شود اما در واقع بخشی از شار مغناطیسی در فضای اطراف پراکنده می‌شود. به شاری که در حین انتقال از مسیر خود جدا می‌شود شار پراکندگی (leakage flux) می‌گویند. این شار پراکندگی موجب به وجود آمده اثر خود القا در سیم‌پیچ‌ها می‌شود و به این ترتیب موجب می‌شود که در هر سیکل، انرژی در سیم‌پیچ ذخیره شده و در نیمه پایانی سیکل آزاد شود. این اثر به طور مستقیم باعث ایجاد افت توان نخواهد شد اما به دلیل ایجاد اختلاف فاز موجب ایجاد مشکلاتی در تنظیم ولتاژ خواهد شد و به این ترتیب باعث خواهد شد تا ولتاژ ثانویه دقیقاً نسبت واقعی خود با ولتاژ اولیه حفظ نکند؛ این اثر به ویژه در بارهای بزرگ خود را نشان خواهد داد. به همین دلیل ترانسفورماتورهای توزیع طوری ساخته می‌شوند تا کمترین میزان تلفات پراکندگی را داشته باشند.

با این حال در برخی کاربردها، وجود تلفات پراکندگی بالا پسندیده‌است. در این ترانسفورماتورها با استفاده از روش‌هایی مانند ایجاد مسیرهای مغناطیسی طولانی، شکاف‌های هوایی یا مسیرهای فرعی مغناطیسی اقدام به افزایش شار پراکندگی می‌کنند. دلیل افزایش عمدی تلفات پراکندگی در این ترانسفورماتورها قابلیت بالای این نوع ترانسفورماتورها در تحمل اتصال کوتاه است. از این گونه ترانسفورماتورها برای تغذیه بارهای دارای مقاومت منفی مانند دستگاه‌های جوش (یا دیگر تجهیزات استفاده کننده از قوس الکتریکی)، لامپ‌های بخار جیوه و تابلوهای نئون یا ایجاد ایمنی در بارهایی که احتمال بروز اتصال کوتاه در آنها زیاد است استفاده می‌شود.

تاثیر بسامد

مشتق زمان در قانون فاراده نشان می‌دهد که شار در یک سیم‌پیچ، برابر انتگرال ولتاژ ورودی است. در یک ترانسفورماتور ایده‌آل افزایش شار در سیم‌پیچ به طور خطی در نظر گرفته می‌شود اما در عمل شار مغناطیسی با سرعت نسبتا زیاد افزایش پیدا می‌کند این افزایش تا جایی ادامه دارد که شار به نقطه اشباع مغناطیسی هسته می‌رسد. به خاطر افزایش ناگهانی جریان مغناطیس کننده در یک ترانسفورماتور واقعی، همه ترانسفورماتورها باید همیشه با جریان متناوب سینوسی (نه پالسی) تغذیه شوند.

معادله عمومی EMF برای ترانسفورماتورها[نیازمند منبع]

اگر شار مغناطیسی را سینوسی در نظر بگیریم رابطه بین ولتاژ E، بسامد منبع f، تعداد دور N، سطح مقطع هسته A و ماکزیمم چگالی مغناطیسی B از رابطه عمومی EMF و به صورت زیر به دست می‌آید:

 E={\frac {2 \pi f N a B} {\sqrt{2}}} \!=4.44 f N a B

برای یک ترانسفورماتور در چگالی مغناطیسی ثابت، EMF با افزایش بسامد افزایش می‌یابد که تاثیر آن را می‌توان از معادله عمومی EMF محاسبه کرد. بنابراین با استفاده از ترانسفورماتورها در بسامد بالاتر می‌توان بهره‌وری آنها را نسبت به وزن‌شان افزایش داد چراکه یک ترانسفورماتور با حجم هسته ثابت در بسامد بالاتر می‌تواند میزان توان بیشتری را بین سیم‌پیچ‌ها جابجا کند و تعداد دور سیم‌پیچ کمتری نیز برای ایجاد یک امپدانس ثابت نیاز خواهد بود. با این حال افزایش بسامد می‌تواند موجب به وجود آمدن تلفات مضایف مانند تلفات هسته و اثر سطحی در سیستم شود. در هواپیماها و برخی تجهیزات نظامی از بسامد ۴۰۰ هرتز استفاده می‌شود چراکه با این کار گذشته از افزایش برخی تلفات می‌توان حجم تجهیزات را کاهش داد.

به طور کلی استفاده از یک ترانسفورماتور در ولتاژ نامی ولی بسامد بیش از نامی موجب کاهش جریان مغناطیس کننده می‌شود و به این ترتیب در بسامدی کمتر از بسامد نامی جریان مغناطیس کننده می‌تواند در حد زیادی افزایش یابد. البته استفاده از ترانسفورماتورها در بسامدهای بیشتر یا کمتر از بسامد نامی باید قبل از اقدام، مورد ارزیابی قرار گیرد تا شرایط ایمن برای کار ترانس مثل سنجش ولتاژها، تلفات و استفاده از سیستم خنک‌کننده خاص بررسی شود. برای مثال ترانسفورماتورها باید به وسیله رله‌های کنترل محافظتی ولتاژ به ازای بسامد مجهز شوند تا در مقابل اضافه ولتاژهای ناشی از افزایش بسامد محافظت شوند.

تلفات انرژی

یک ترانسفورماتور ایده‌آل هیچ تلفاتی نخواهد داشت و در واقع بازدهی برابر ۱۰۰٪ دارد. با این حال ترانسفورماتورهای واقعی نیز جزو بهره‌ورترین تجهیزات الکتریکی محسوب می‌شود به طوری که نمونه‌های آزمایشی ترانسفورماتورهایی که با بهرگیری از ابر رسانا ساخته شده‌اند به بازدهی برابر ۹۹٫۸۵٪ دست یافته‌اند. به طور کلی ترانسفورماتورهای بزرگتر از بازده بالاتری برخوردارند و ترانسفورماتورهایی که برای مصارف توزیعی مورد استفاده قرار می‌گیرند از بازدهی در حدود ۹۵٪ برخوردارند در حالی که ترانسفورماتورهای کوچک مانند ترانسفورماتورهای موجود در اداپتورها بازدهی در حدود ۸۵٪ دارند. تلفات به وجود آمده در ترانسفورماتور با توجه به عوامل به وجود آورنده یا محل اتلاف انرژی به این صورت طبقه بندی می‌شوند:

مقاومت سیم‌پیچ‌ها

جریانی که در یک هادی جاری می‌شود با توجه به میزان مقاومت الکتریکی هادی می‌تواند موجب به وجود آمدن حرارت در محل عبور جریان شود. در بسامدهای بالاتر اثر سطحی و اثر مجاورت نیز می‌توانند تلفات مضایفی را در ترانسفورماتور به وجود آورند.

تلفات پسماند (هیسترزیس)

هر بار که جهت جریان الکتریکی به‌خاطر وجود بسامد عوض می‌شود با توجه به جنس هسته، مقدار کمی انرژی در هسته باقی می‌ماند. به این ترتیب برای یک هسته با جنس ثابت این نوع تلفات با میزان بسامد تناسب دارد و با افزایش بسامد تلفات پسماند هسته نیز افزایش می‌یابد.

جریان گردابی

شکل-۳ یک ترانسفورماتور ایده‌آل به عنوان المانی در مدار

مواد فرومغناطیس معمولاً هادی‌های الکتریکی خوبی نیز هستند و بنابراین هسته ترانسفورماتورمی‌تواند مانند یک مدار اتصال کوتاه شده عمل کند. بنابراین حتی با القای میزان کمی ولتاژ، جریان در هسته به شدت بالا می‌رود. این جریان جاری در هسته گذشته از به وجود آوردن تلفات الکتریکی موجب به وجود آمدن حرارت در هسته نیز می‌شود. جریان گردابی در هسته با مجذور بسامد منبع رابطه مستقیم و با مجذور ضخامت ورق هسته رابطه معکوس دارد. برای کاهش تلفات گردابی در هسته، هسته‌ها را ورقه ورقه کرده و آنها را نسبت به یکدیگر عایق می‌کنند.

تغییر شکل بر اثر مغناطیس

شار مغناطیسی در یک ماده فرومغناطیس موجب حرکت نسبی ورقه‌های هادی نسبت به یکدیگر می‌شود. در صورت محکم نبودن این ورقه‌ها این اثر می‌تواند موجب ایجاد صدایی شبیه وز وز در هنگام کار کردن ترانسفورماتور شود به این اثر تغییر شکل بر اثر میدان مغناطیسی یا Magnetostriction می‌گویند. این اثر می‌تواند موجب به وجود آمدن گرما در اثر اصطکاک بین صفحات نیز شود.

تلفات مکانیکی

به دلیل وجود تغییر شکل بر اثر مغناطیس در یک ترانسفورماتور بین قطعات ترانسفورماتور نوعی حرکت به وجود می‌آید این تحرک نیز به نوبه خود موجب به وجود آمدن تلفات مکانیکی در ترانسفورماتورخواهد شد. در صورتی که قطعات موجود در ترانسفورماتور به خوبی در جای خود محکم نشده باشند، تحرکات مکانیکی آنها نیز افزایش یافته و در نتیجه تلفات مکانیکی نیز افزایش خواهد یافت.

مدار معادل

شکل-۴ مدار معادل یک تراسنفورماتور

محدودیت‌های فیزیکی یک ترانسفورماتور واقعی به صورت یک مدار نمایش داده می‌شوند. این مدار معادل از تعدادی از عوامل به وجود آورنده تلفات یا محدودیت‌ها و یک ترانسفورماتور ایده‌آل تشکیل شده‌است. تلفات توان در سیم‌پیچ یک ترانسفورماتور به طور خطی تابعی از جریان هستند و به راحتی می‌تواند آنها را به صورت مقاومت‌هایی سری با سیم‌پیچ‌های ترانسفورماتور نمایش داده شود؛ این مقاومت‌ها RS و RP هستند. با بررسی خواص شار پراکندگی می‌توان آن را به صورت خود القاهای XP و XS نشان داد که به صورت سری با سیم‌پیچ ایده‌آل قرار می‌گیرند. تلفات آهنی از دو نوع تلفات گردابی (فوکو) و پسماند (هیسترزیس) تشکیل شده. در بسامد ثابت این تلفات با مجذور شار هسته نسبت مستقیم دارند و از آنجایی که شار هسته نیز تقریباً با ولتاژ ورودی نسبت مستقیم دارد این تلفات را می‌توان به صورت مقاومتی موازی با مدار ترانسفورماتور نشان داد. این مقاومت همان RC است.

هسته‌ایی با نفوذپذیری محدود نیازمند جریان IM خواهد بود تا همچنان شار مغناطیسی را در هسته برقرار کند. بنابراین تغییرات در جریان مغناطیس کننده با تغییرات در شار مغناطیسی هم فاز خواهد بود و به دلیل اشباع پذیر بودن هسته، رابطه بین این دو خطی نخواهد بود. با این حال برای ساده کردن این تاثیرات در بیشتر مدارهای معادل این رابطه خطی در نظر گرفته می‌شود. در منابع سینوسی شار مغناطیسی ۹۰ درجه از ولتاژ القایی عقبتر خواهد بود، بنابراین این اثر را می‌توان با القاگر XM در مدار نشان داد که به طور موازی با تلفات آهنی هسته RC قرار می‌گیرد. RC و XM را در برخی موارد با هم به صورت یک شاخه در نظر می‌گیرند و آن را شاخه مغناطیس کننده می‌نامند. اگر سیم‌پیچ ثانویه ترانسفورماتور را مدار باز کنیم تمامی جریان عبوری از اولیه ترانسفورماتور جریان I0 خواهد بود که از شاخه مغناطیس کننده عبور خواهد کرد این جریان را جریان بی‌باری نیز می‌نامند.

مقاومت‌های موجود در طرف ثانویه یعنی RS و XS نیز باید به طرف اولیه منتقل شوند. این مقاومت‌ها در واقع معادل تلفات مسی و پراکندگی در طرف ثانویه هستند و به صورت سری با سیم پیچ ثانویه قرار می‌گیرند.

مدار معادل حاصل را مدار معادل دقیق می‌نامند گرچه در این مدار معادل نیز از برخی ملاحضات پیچیده مانند اثرات غیرخطی چشم پوشی می‌کند.

انواع

ساخت انواع مختلف ترانسفورماتورها به منظور رفع اهداف استفاده از آنها در کاربردهای متفاوت می‌باشد. در این میان برخی از انواع ترانسفورماتورها بیشتر مورد استفاده قرار می‌گیرند که می‌توان به نمونه‌ها زیر اشاره کرد:

اتوترانسفورماتور

اتوترانسفورماتور به ترانسفورماتوری گفته می‌شود که تنها از یک سیم‌پیچ تشکیل شده‌است. این سیم‌پیچ دارای دو سر ورودی و خروجی و یک سر در میان است. به طوری که می‌توان گفت سیم‌پیچ کوتاه‌تر(که در ترنس کاهنده سیم‌پیچ ثانویه محسوب می‌شود) قسمتی از سیم‌پیچ بلندتر است. در این گونه ترانسفورماتورها تا زمانی که نسبت ولتاژ-دور در دو سیم‌پیچ برابر باشد ولتاژ خروجی از نسبت سیم‌پیچ تعداد دور سیم‌پیچ‌ها به ولتاژ ورودی به دست می‌آید.

با قرار دادن یک تیغه لغزان به جای سر وسط ترانس، می‌توان نسبت سیم‌پیچ‌های اولیه و ثانویه را تا حدودی تغییر داد و به این ترتیب ولتاژ پایانه خروجی ترانسفورماتور را تغییر داد. مزیت استفاده از اتوترانسفورماتور کم هزینه تر بودن آن است چراکه به جای استفاده از دو سیم‌پیچ تنها از یک سیم‌پیچ در آنها استفاده می‌شود.

ترانسفورماتور چند فازه

برای تغذیه بارهای سه فاز می‌توان از سه ترانسفورماتور جداگانه استفاده کرد یا آنکه از یک ترانسفورماتور سه فاز استفاده کرد. در یک ترانسفورماتور سه فاز مدارهای مغناطیسی با هم مرتبط هستند و بنابر این هسته دارای شار مغناطیسی در سه فاز متفاوت است. برای چنین هسته‌هایی می‌توان از چندین شکل مختلف برای هسته استفاده کرد که این شکل‌های مختلف هر یک دارای مزایا و معایبی هستند و در مواردی خاص کاربرد دارند.

طبقه‌بندی

به دلیل وجود کاربردهای متفاوت برای ترانسفورماتورها، آنها ار بر حسب پارامترهای متفاوتی طبقه‌بندی می‌کنند:

  • بر حسب رده توان: از کسری از ولت-آمپر تا بیش از هزار مگا ولت-آمپر.
  • بر حسب محدوده بسامد: بسامد قدرت، بسامد صوتی، بسامد رادئویی
  • بر حسب رده ولتاژ: از چند ولت تا چند صد کیلوولت
  • بر حسب نوع خنک کنندگی: خنک کننده هوا، روغنی، خنک کنندگی با فن، خنک کنندگی آب.
  • بر حسب نوع کاربرد: منبع تغذیه، تطبیق امپدانس، تثبیت کننده ولتاز و جریان خروجی یا ایزوله کردن مدار.
  • برحسب هدف نهایی کاربرد: توزیع، یکسوسازی، ایجاد قوس الکتریکی، ایجاد تقویت کننده.
  • بر حسب نسبت سیم‌پیچ‌ها: افزاینده، کاهنده، ایزوله کننده (با نسبت تقریبا یکسان در دوسیم‌پیچ)، متغیر.

ساختمان

هسته

هسته لایه لایه شده

لایه لایه کردن هسته ترانس جریان گردابی را به شدت کاهش می‌دهد.

ترانسفورماتورها مورد استفاده در کاربردهای قدرت یا بسامد بالا (رادیویی) معمولاً از هسته با جنس فولاد سیلیکاتی با قابلیت نفوذپذیری مغناطیسی بالا استفاده می‌کنند. قابلیت نفوذپذیری مغناطیسی در فولاد بارها بیشتر از نفوذپذیری در خلاء است و به این ترتیب با استفاده از هسته‌های فولادی جریان مغناطیس کننده مورد نیاز برای هسته به شدت کاهش می‌یابد و شار در مسیری کاملا نزدیک به سیم‌پیچ‌ها محبوس می‌شود. سازندگان ترانسفورماتورهای اولیه به سرعت متوجه این موضوع شدند که استفاده از هسته یک پارچه باعث افزایش تلفات گردابی در هسته ترانسفورماتور می‌شود و در طراحی‌های خود از هسته‌هایی استفاده کردند که از دسته‌های عایق شده آهن تولید شده بود. در طراحی‌هایی بعدی با استفاده از ورق‌های نازک آهن که نسبت به یکدیگر عایق شده بودند، تلفات در ترانسفورماتور باز هم کاهش یافت. از این روش در ساخت هسته امروزه نیز استفاده می‌شود. همچنین با استفاده از معادله عمومی ترانسفورماتور می‌توان نتیجه گرفت که کمترین سطح اشباع در هسته با سطح مقطع کوچکتر ایجاد می‌شود.

گرچه استفاده از هسته‌های با لایه‌های نازک‌تر تلفات را کاهش می‌دهد، اما از طرفی هزینه ساخت ترانسفورماتور را افزایش می‌دهد. بنابراین از هسته‌های با لایه‌های نازک معمولاً در بسامدهای بالا استفاده می‌شود. با استفاده از برخی انواع هسته‌های با لایه‌های بسیار نازک امکان ساخت ترانسفورماتورهایی برای کاربرد در مصارف تا ۱۰ کیلوهرتز پدید می‌آید.

نوعی متداول از هسته‌های لایه لایه، از قطعاتی E شکل که با قطعاتی I شکل یک هسته را به وجود می‌آورند تشکیل شده. این هسته‌ها را هسته‌های E-I می‌نامند. این هسته‌ها گرچه تلفات را افزایش می‌دهند اما به علت آسانی مونتاژ، هزینه ساخت هسته را کاهش می‌دهند. نوع دیگری از هسته‌ها، هسته‌های C شکل هستند. این هسته از قرار دادن دو قطعه C شکل در مقابل یکدیگر تشکیل می‌شود. این هسته‌ها این مزیت را دارند که تمایل شار برای عبور از هر قطعه از هسته برابر است و این مزیت باعث کاهش یافتن مقاومت مغناطیسی می‌شود.

پسماند در یک هسته فولادی به معنای باقی ماندن خاصیت مغناطیسی در هسته پس از قطع شدن توان الکتریکی است. زمانی که جریان دوباره در هسته جاری می‌شود این پسماند باقی مانده در هسته تا زمانی که کاهش یابد موجب به وجود آمدن یک جریان هجومی در ترانس می‌شود. تجهیزات حفاظتی مانند فیوزها باید طوری انتخاب شوند که به این جریان هجومی اجازه عبور دهند.

ترانسفورماتورهای توزیع می‌توانند با استفاده از هسته‌های با قابلیت نفوذ پذیری مغناطیسی بالا تلفات بی باری را کاهش دهند. هزینه اولیه هسته بعدها با صرفه‌جویی که در مصرف انرژی و افزایش طول عمر ترانس می‌شود جبران خواهد شد.

هسته‌های یکپارچه

هسته‌هایی که از آهن پودر شده ساخته شدند در مدارهایی که با بسامد بالاتر از بسامد شبکه تا چند ده کیلوهرتز کار می‌کنند کاربرد دارند. این هسته دارای قابلیت نفوذ پذیری مغناطیسی بالا و همچنین مقاومت الکتریکی بالا هستند. برای بسامدهایی بالاتر از باند VHF از هسته‌های غیر رسانای فریت استفاده می‌شود. برخی از ترانسفورماتورهای بسامد رادیویی از هسته‌های متحرک استفاده می‌کنند که این امکان را به وجود می‌آورد که ضریب اتصال هسته قابل تغییر باشد.

هسته‌های حلقوی

ترانسفورماتور هسته حلقوی کوچک

ترانسفورماتورهای حلقوی دور حلقه‌ای ساخته می‌شوند.جنس این هسته بسته به بسامد مورد استفاده ممکن است از نوارهای بلند فولاد سیلیکاتی، پرمالوی پیچیده شده دور یک چنبره، آهن تقویت شده یا فریت باشد.ساختار نواری باعث چینش بهینه مرز_دانه‌ها می‌شود که این امر با کاهش رلوکتانس هسته موجب افزایش بهره وری ترنسفورماتور می‌گردد.شکل حلقوی بسته باعث از بین رفتن فاصله هوایی در هسته‌هایی با ساختار E-I می‌شود.سطح مقطع حلقه عموما به صورت مربعی یا مستطیلی می‌باشند، البته هسته‌هایی با سطح مقطع دایروی با قیمت بالا نیز وجود دارند. سیم پیچیهای اولیه و ثانویه به صورت فشرده پیچیده می‌شوند و تمام سطح حلقه را می‌پوشانند. با این کار می‌توان طول سیم مورد نیاز را به حداقل رساند. در توانهای برابر ترانسفورماتورهای حلقوی از انواع E-I -که ارزانتر میباشند- بازده بیشتری دارند.دیگر مزایای ترانسفورماتورهای حلقوی به قرار زیرند:اندازه کوچکتر (در حدود نصف)، وزن کمتر(در حدود نصف)، اغتشاش (صدای هوم) پائین(ایده آل برای استفاده در تقویت کننده‌های صوتی)، میدان مغناطیسی کمتر(در حدود یک دهم)، تلفات بی باری پائین(مناسب برای مدارها در حالت آماده بکار-standby-). از معایب آنها به قیمت بیشتر و توان نامی محدود می‌توان اشاره کرد. در بسامدهای بالا هسته‌های حلقوی فریت مورد استفاده قرار می‌گیرند. فریت قابلیت کار در بسامدهای چند ده کیلوهرتز تا یک مگا هرتز را دارا میباشد. با بکارگیری فریت تلفات، اندازه فیزیکی، و وزن منابع نیروی سوئیچ مد کاهش می‌یابد. ایراد دیگر ترانسفورماتورهای حلقوی هزینه بالای سیم پیچی در آنهاست. در نتیجه آنها در توان‌های نامی بیشتر از چند کیلوولت آمپر کاربرد بسیار کمی دارند.

مولد الکتریکی

مولد الکتریکی

در تولید انرژی الکتریکی مولد به ماشینی گفته می‌شود که از طریق القای الکترومغناطیسی انرژی مکانیکی را به انرژی الکتریکی تبدیل می‌کند. تبدیل بالعکس انرژی الکتریکی به انرژی مکانیکی به وسیله موتور الکتریکی صورت می‌گیرد. موتورها و مولدهای الکتریکی از جهات مختلفی دارای شباهت‌های زیادی با یکدیگر هستند. منبع تامین کننده انرژی مکانیکی ممکن است توربین بخار، توربین آبی، توربین بادی و یا یک موتور احتراق داخلی باشد.

یک مولد ابتدایی متعلق به قرن 20 ساخته شده در بوداپست مجارستان

پیشرفت

قبل از اینکه رابطه بین الکتریسیته و مغناطیس کشف شود مولدهای الکترواستاتیکی کشف شدند که از اصول الکترواستاتیک برای تولید انرژی الکتریکی استفاده می‌کردند. این مولدهای توان را در ولتاژ بسیار بالا وجریان الکتریکی اندک تولید می‌کردند. این ماشین‌ها از یکی از این دو مکانیزم برای تولید انرژی الکتریکی استفاده می‌کردند:

  • ۱- القای الکترواستاتیک
  • ۲- تولید برق بر اثر اصطکاک (تریبوالکتریسیته)

به دلیل بهره‌وری پایین این مولدها و نیاز آنها برای استفاده از عایق کاری پر هزینه به علت ولتاژ بالا این مولدها هرگز در کاربردهای عملی و برای تولید میزان قابل توجهی از انرژی الکتریکی مورد استفاده قرار نگرفتند. ماشین ویمشاست (Wimshurst) و مولدهای ون دی گراف (Van de Graaff) مثال‌هایی از این مولدها هستند که هنوز مورد استفاده قرار می‌گیرند.

صفحه فارادی

صفحه فارادی

در سال‌های ۱۸۳۱-۱۸۳۲ مایکل فارادی اصول عملکرد مولدهای الکترومغناطیسی را کشف کرد. این اصل بعدها قانون فارادی نام گرفت که بر این نکته دلالت می‌کند که در دو سر هادی که به طور عمودی نسبت به یک میدان مغناطیسی حرکت کند پتانسیل الکتریکی ایجاد می‌شود. او همچنین اولین مولد الکترومغناطیس را نیز ساخت که به آن صفحه فارادی گفته شد. این مولد یک مولد هم قطب بود که از یک صفحه مسی که بین دو آهن‌ربای نعل اسبی می‌چرخید تشکیل شده بود. این مولد قادر به ساخت میزان اندکی ولتاژ جریان مستقیم با یک جریان بالا بود.

البته این طراحی از جهات مختلفی کم بازده بود چرا که ولتاژ تنها در قسمت‌هایی از صفحه به وجود می‌آمد که زیر قطب‌ها قرار داشتند و جریان تولیدی به سرعت در دیگر قسمت‌های صفحه پخش می‌شد و این جریان جاری شده در صفحه موجب هدر رفتن انرژی به صورت گرما می‌شد. مولدهای هم قطب بعدی این مشکل را با استفاده از آهن رباهایی که تمام محیط صفحه را پوشش می‌دادند حل کردند به طوری که میدان در طول تمام صفحه به طور یک‌نواخت وجود داشته باشد.

دینام

دینام اولین مولد الکتریکی بود که این قابلیت را داشت تا برق مورد نیاز صنایع را تامین کند. دینام از اصول الکترومغناطیس برای تبدیل انرژی مکانیکی به انرژی الکتریکی استفاده می‌کند و با استفاده از کموتاتور جریان مستقیم را در خروجی خود تولید می‌کند. در طول مجموعه‌ای از اکتشافات تصادفی دینام به یک منبع برای اختراع ماشین‌هایی چون موتور الکتریکی جریان مستقیم، تناوب‌گر AC، موتور سنکرون و مبدل گردان تبدیل شد.

یک دینام از یک قسمت ثابت که میدان مغناطیسی دائمی را تولید می‌کند و مجموعه‌ای از سیم‌پیچ‌های متحرک که در داخل میدان می‌گردند تشکیل شده‌است. در دینام‌های کوچک میدان ثابت ممکن است به وسیله چند آهنربای دائمی فراهم شود. در دینام‌های بزرگ این میدان به وسیله یک یا چند آهنربای الکتریکی ایجاد می‌شود.

امروزه به ندرت می‌توان مولدهای دینامی بزرگی را دید که برای تولید انرژی الکتریکی مورد استفاده قرار گیرند و این به دلیل عدم استفاده از جریان مستقیم است. امروزه استفاده از جریان متناوب به علت بهره‌وری بالا در حین تولید، توزیع و انتقال به شدت گسترش یافته و برای تبدیل از جریان متناوب به جریان مستقیم نیز معمولا از مدارات الکترونیکی و الکترونیک قدرت استفاده می‌شود. اما پیش از کشف اصول جریان متناوب تولید انرژی الکتریکی تقریبا فقط با استفاده از تعداد زیادی مولد دینامی ممکن بود. امروزه مولدهای دینامی تنها به عنوان ابزاری نمادین برای نشان دادن تاریخ تولید برق مورد استفاده قرار می‌گیرند.

مولدهای MHD

یک مولد MHD یا مگنوهیدرودینامیکی نوعی از مولد است که برق را مستقیم از گازهای داغی که در یک میدان مغناطیسی در حرکت هستند و بدون استفاده از تجهیزات الکترومغناطیسی می‌گیرد. امکان استفاده از گازهای خروجی از این مولد برای گرم کردن یک بویلر در یک چرخه گرمایی، استفاده از این مولدها را منطقی‌تر کرده‌است. اولین نوع از این دسته مولدها در سال ۱۹۶۵ طراحی شد و اوج استفاده از این مولدها به یک نیروگاه نمایشی ۲۵ مگاواتی در ایالات متحده باز می‌گردد. با وجود امکان استفاده از گرمای گازهای خروجی مورد استفاده در این مولدها بهره‌وری آنها از توربین‌های سیکل ترکیبی پایین‌تر است و به همین دلیل استفاده از این مولدها بسیار محدود است.

بر خلاف تصور عموم یک مولد به هیچ عنوان بار الکتریکی را تولید نمی‌کند بلکه میزان بار الکتریکی همواره در هادی ثابت است. عملکرد یک مولد با عملکرد پمپ آب قابل مقایسه‌است که تنها جریان آب را ایجاد می‌کند و به خودی خود آبی تولید نمی‌کند.

تحریک

هر موتور یا مولدی که از یک سیم‌پیچ به جای آهنربای دائم استفاده کند نیازمند جریانی است تا در سیم‌پیچ‌ها جریان داشته باشد و ماشین را قادر به کار کند. در صورتیکه جریانی در سیم‌پیچ تحریک مولد وجود نداشته باشد حرکت روتور نمی‌تواند موجب تولید انرژی الکتریکی شود. در نیروگاه‌های بزرگ از مولدهای کوچک برای تولید جریان تحریک مولدها استفاده می‌شود.

مدار معادل

مدار معدل یک مولد و بار خارجی

مدار معادل یک مولد به همراه بار خارجی RL در تصویر سمت چپ نمایش داده شده. برای به دست آوردن پارامترهای VG (ولتاژ مولد) و RG (مقاومت الکتریکی مولد) باید به ترتیب زیر عمل کنید:

  • پیش از شروع به کار مولد با استفاده از یک اهم متر، مقاومت پایانه‌های مولد را اندازه‌گیری کنید. این مقامت مقاومت VDCG یا مقامت DC داخلی مولد نام دارد.
  • پس از راه‌اندازی مولد و قبل از وصل بار RL به مدار با استفاده از ولت متر میزان ولتاژ را در پایانه‌های مولد اندازه‌گیری کنید. این ولتاژ VG یا ولتاژ مدار باز مولد نام دارد.
  • بار RL را به صورتی که در شکل نشان داده شده به مولد متصل کنید و سپس ولتاژ را در پایانه‌های مولد اندازگیری کنید. این ولتاژ VL یا ولتاژ زیر بار مولد نام دارد.
  • در صورتی که از میزان بار RL اطلاع ندارید میزان مقاومت بار را اندازه‌گیری کنید.
  • میزان مقاومت AC داخلی مولد با استفاده از فرمول زیر محاسبه می‌گردد:

R_{GAC} = {R_L} \left({{{V_G}\over{V_L}}-1} \right)

به طور کلی مقاومت AC داخلی مولد در هنگام حرکت مولد کمی بیشتر از مقاومت داخلی DC آن در حالت توقف مولد است. رویه بالا این امکان را برای شما به وجود می‌آورد که دو پارامتر را با دقت بهتری به دست آورید اما می‌توانید برای محاسبه تقریبی دو پارامتر مقاومت AC و DC را برابر در نظر بگیرید.

  • نکته: در صورتی که مولد از نوع AC است از یک ولت متر AC برای اندازه‌گیری ولتاژ استفاده کنید.

بر طبق «قاعده توان بیشینه در مولد» توان بیشینه در مولد هنگامی ایجاد می‌شود که میزان مقاومت بار خارجی با میزان مقاومت داخلی مولد برابر باشد. اما در این صورت نیمی از توان تولیدی مولد در مقاومت داخلی آن به مصرف می‌رسد که این امر بهره‌وری مولد را به شدت کاهش می‌دهد و به همین دلیل در مولدها معمولا میزان مصرف بار خارجی چندین برابر مصرف بار داخلی مولد است تا به این ترتیب بهره‌وری مولد بالاتر رود.

مولدهای موجود در وسائل نقلیه

تقریبا تمامی خودروها از یک مولد داخلی برای تغذیه سیستم الکتریکی خودرو و شارژ دوباره باتری بعد از روشن شدن استفاده می‌کنند. این مولد داخلی انرژی مکانیکی مورد نیاز خود را از موتور و به وسیله یک اتصال مکانیکی غیر مستقیم تامین می‌کند. وسائل نقلیه موتوری اولیه تا دهه ۱۹۶۰ از مولدهای DC که بهره‌وری پایین‌تری دارند، برای تولید انرژی الکتریکی مورد نیاز در خودرو استفاده می‌کردند اما امروزه مولدهای DC جای خود را به تناوب‌گرها یا دینام‌های جریان متناوب (alternator) داده‌اند که از یک یکسوکننده داخلی برای یکسوسازی خروجی مولد استفاده می‌کنند. مولد داخلی خودرو به طور معمول دارای خروجی ۱۲ ولت ۵۰ تا ۱۰۰ آمپر است که این خروجی با توجه به میزان بار الکتریکی داخلی خودرو می‌تواند بیشتر نیز باشد برای مثال خودروهایی که دارای سیستم فرمان هیدرولیک و سیستم تهویه هستند دارای مصرف بمثابه بیشتری نسبت به خودروهای معمولی هستند.

از آنجایی که در خودروهای دیزلی انرژی زیادی برای راه اندازی خودرو در استارتر موتور استفاده می‌شود؛ در خودروهای باربری و خودورهای بزرگ بیشتر از مولدهای ۲۴ ولت برای تامین برق استفاده می‌شود و به این ترتیب نیاز به افزایش سطح مقطع سیم‌کشی داخلی خودرو برطرف خواهد شد. مولدهای داخلی بیشتر خودروها از آهنربای غیر دائم استفاده می‌کنند و معمولا بهره‌وری بین ۵۰٪ تا ۶۰٪ دارند در حالی که در مولدهای موتور سیکلت‌ها از آهنربای دائمی استفاده شده که باعث کاهش حجم مولد می‌شود.

مولدهای کوچکتر نسبت مولد موتور سیکلت‌ها را می‌توان در دوچرخه‌ها دید. این مولدها که از آهنربای دائم استفاده می‌کنند و جریانی ۰٫۵ آمپر را در ولتاژ ۶ یا ۱۲ ولت تولید می‌کنند. در این نوع مولدها بهره‌وری از اهمیت بالایی برخوردار است ولی با این وجود به علت استفاده از آهنربای دائم از ۶۰٪ (۴۰٪ معمول‌تر است) تجاوز نمی‌کند.

باتری

باتری

باتری یا پیل الکتریکی (ولتائیک) چشمه‌ای از انرژی پتانسیل الکتریکی است که سایر انرژی‌ها مانند انرژی شیمیایی، نور و یا … را به انرژی الکتریکی تبدیل می‌کند و این انرژی در قطب‌های باتری قابل دریافت است. انرژی قابل دریافت در قطب‌های باتری به ازای واحد بار الکتریکی را نیروی محرکه الکتریکی (Electromotive force یا emf) باتری می‌گویند و آن را با یکای ولت اندازه گیری می‌کنند. قطب مثبت باتری آند و قطب منفی آن کاتد نام دارد.

ساختمان باتری

هر باتری یک مقاومت داخلی (r) دارد. اختلاف پتانسیل بین قطب‌های باتری (v)، زمانی که جریان I از آن می‌گذرد، برابر V=Eemf – Ir می‌باشد. فرایند تبدیل انرژی در باتری با گذشت زمان افزایش مقاومت الکتریکی داخلی یا کاهش انرژی پتانسیل اولیه همراه است. مقدار مقاومت داخلی به نوع باتری و طرز ساختش وابسته‌است.

شارژ باتری

در باتری فرسوده نوعی مقاومت داخلی به قدری زیاد است که با عبور جریان، ولتاژ دو سر باتری به سرعت افت می‌کند و باتری قابلیت تامین انرژی الکتریکی مفید را ندارد. در برخی باتری‌ها با گذراندن جریانی در جهت مخالف جریان، به هنگامی که باتری کار عادی‌اش را انجام می‌دهد، می‌توان باتری را دوباره باردار یا شارژ کرد. در فرایند شارژ باتری انرژی پتانسیل در آن ذخیره می‌شود البته تعداد دفعات شارژ باتری به خاطر برگشت ناپذیری فرایندهای تبدیل انرژی، محدود است.

فرایندهای تبدیل انرژی در باتری

در باتری خشک معمولی، بر اثر واکنش ماده آند (قطب مثبت) و ماده کاتد (قطب منفی) با الکترولیتی که محیط بین آند و کاتد را تشکیل می‌دهد، انرژی شیمیایی به انرژی الکتریکی تبدیل می‌شود. در باتری خورشیدی، انرژی الکترومغناطیسی نور تابیده شده به سلول‌های خورشیدی، با جداسازی‌های مثبت و منفی درون باتری، به شکل انرژی الکتریکی در می‌آید.

توان الکتریکی باتری

توانی که هر باتری بر حسب وات تامین می‌کند، برابر حاصل‌ضرب نیروی محرکه الکتریکی (بر حسب ولت) در شدت جریان الکتریکی باتری I (برحسب آمپر) می‌باشد. در کاربردهایی با توان زیاد از جمله استارت زنی اتومبیل موتور اتومبیل، میزان توان‌های تامین شده در فواصل زمانی کوتاه به بیش از ۱۰۰۰ وات می‌رسد. در کاربرد کم توان در وسایل الکترونیکی ظریف، مانندسمعک‌ها و ساعت‌های کامپیوتری، میزان توان‌های تامین شده در حدود چند میلی وات است.

خطرات و نقایص باتری

خطرات و نقایص مربوط به باتری عبارتند از:

  • انفجار
  • نشتی
  • ملاحظات زیست محیطی

انفجار

پدیده انفجار باتری عموماً ناشی از عدم کاربرد یا کارکرد صحیح باتری است. به عنوان مثال تلاش برای شارژ نمودن مجدد باتری‌های یک بار مصرف یا غیر قابل شارژ، اتصال کوتاه نمودن دو قطب مثبت و منفی باطری می تواند باعث انفجار این منبع انرژی الکتریکی شود.

نشتی

در بعضی از باتری‌ها از مقوا، فلز روی و مواد شیمیایی استفاده می شود. واکنش شیمیایی درون باتری در مدت زمان طولانی، باعث خروج و نشت مواد شیمیایی داخل باتری به بیرون شده و ایجاد خوردگی شیمیایی در قطعات فلزی دستگاه‌ها که اطراف باتری قرار دارند می نماید.

ملاحظات زیست محیطی

افزایش استفاده از باتری‌ها و کاربردهای وسیع آن باعث افزایش زباله‌های صنعتی و مشکلات زیست محیطی جدید این محصول شده است. تولید کنندگان باتری از مواد شیمیایی خطر ناک برای ایجاد کارایی بهتر باتری‌های تولیدی خود استفاده می کنند. زباله‌های باطری باعث بالا رفتن آلودگی محیط زیست به سموم مهلک فلزی باتری‌ها شده است .

باتری‌های امروزی

امروزه باتری‌هایی می‌توان ساخت که به طور متوسط در کاربردها پنج سال عمر مفید دارند. باتری‌ها در بهره گیری از وسایل الکترونیکی نقش مهمی ایفا می‌کنند. البته با بهبود بخشیدن تکنولوژی باتری‌ها منابع انرژی قابل حملی برای هر معرفی، از دستگاه‌های استریوی دستی تا اتومبیل‌های برقی، در اختیار داشته باشیم.

انواع باتری‌های امروزی عبارت است از:

۱- باتری‌های نیروگاهی (GROE-OGI-OPZS-FNC)

۲- باتری‌های آنتن‌های مخابراتی باتری‌های مخابراتی NET Power-power

۳-باتری‌های مورد استفاده در سامانه‌های ریلی و مترو

۴-باتری‌های مورد استفاده در پروژه‌های نفت، گاز و پتروشیمی (FNC)

۵-باتری‌های خورشیدی (Solar.bloc)

۶-باتری‌های مورد استفاده در ups

۷- باتری‌های منابع تغذیه (SLA – VRLA)

۸-باتری‌های اتومبیل، لیفتراک و موتورسیکلت

۹-باتری‌های سامانه‌های حفاظتی، روشنایی، امنیتی و سامانه‌های کنترل ۱۰- باتری روی – هوا

باتری تیسفون (باتری بغداد)

در سال ۱۳۳۰ خورشیدی، باستان شناس آلمانی ویلهلم کونیک و همکارانش ابزارهایی را در نزدیکی تیسفون پایتخت ایران در دوران اشکانیان یافتند. پس از بررسی معلوم شد که این ابزارها پیل‌های الکتریکی هستند که در دوره تاریخی ایران اشکانی ساخته شده و به کار برده می‌شده‌اند. او این پیل‌های تیسفون را Baghdad Battery نامید که امروزه با نامهای دیگر همچون باتری پارتیان و یا پیل اشکانی هم مشهورند.

این اکتشاف مربوط به دوره تاریخی سلسله اشکانیان، تاحدی موجب شگفتی است. حتی برخی از دانشمندان اروپایی و امریکایی این باتری را به موجودات فضایی افسانه ای و احتمالاً ساکنان فراهوشمند سیارات دیگر که تصور می شود با بشقاب‌های پرنده و کشتی‌های فضایی به زمین آمده‌ بودند، نسبت دادند، و آن را فراتر از دانش اندیشمندان و پژوهشگران آن دوران دانستند. برای ایشان پذیرفتنی نبود که دانش بشری در ۱۵۰۰ سال پیش از گالوای ایتالیایی(۱۷۸۶ میلادی) پیل الکتریکی را اختراع نموده باشند.

به احتمال زیاد، ساکنان بین النهرین از این پیل‌های الکتریکی جریان برق تولید می‌کردند و از آن برای آبکاری اشیا زینتی سود می‌جستند. اما در پهنه دریانوردی منطقه خاورمیانه از این اختراع جهت آبکاری ابزارهای آهنی در کشتی و جلوگیری از زنگ زدن و تخریب آنها استفاده می‌کردند.

منابع

  1.  Energizer.com – Learning Center – Energizer and the Environment. Retrieved 17 December 2007.
  2.  Battery dont’s – Global-Batteries. Retrieved 20 August 2007.
  3.  Batteries – Product Stewardship. EPA. Retrieved 11 September 2007.
  4. ۴٫۰ ۴٫۱ ۴٫۲ ماهنامه پیام دریا، ماهنامه اطلاعات علمی، مقاله اختراعات ایرانیان در پهنه دریانوردی و نجوم (جعفر سپهری)
  5. http://fa.wikipedia.org/wiki/باتری

بار الکتریکی

بار الکتریکی

بار الکتریکی یک خاصیت فیزیکی ماده است که باعث می‌شود، هنگامی که ماده در مجاورت مادهٔ باردار دیگری قرار می‌گیرد به آن نیرو وارد شود. بار الکتریکی دو نوع است بار مثبت و بار منفی. بین دو ماده یا جسم با بارهای هم‌نام نیروی رانش ایجاد می‌شود و برعکس اگر ناهم‌نام باشند بین آن‌ها ربایش ایجاد می‌شود. در سامانهٔ استاندارد بین المللی یکاها واحد بار الکتریکی کولن (C) است. البته در مهندسی برق از یکای آمپرمتر (Ah) نیز استفاده می‌کنند. در مطالعهٔ اندرکنش میان اجسام باردار، دانشالکترومغناطیس کلاسیک کافی است و از اثرهای کوانتومی صرف نظر می‌شود.

بار الکتریکی یک خاصیت پایسته در ماده است به این معنی که بار الکتریکی تولید نمی‌شود یا از بین نمی‌رود؛ بار الکتریکی از ذرات زیراتمی ماده که تعیین‌کنندهٔ خواصالکترومغناطیس ماده‌اند ناشی می‌شود. یک مادهٔ باردار الکتریکی، تولید‌کنندهٔ میدان‌های الکترومغناطیسی است و خود از آنها تاثیر می‌گیرد. اندرکنش میان یک بار متحرک و یکمیدان الکترومغناطیسی عامل ایجاد نیروهای الکترومغناطیسی است. این نیرو خود یکی از چهار نیروی بنیادی است.

آزمایش‌ها در قرن بیستم، توضیحی کوانتومی از بار الکتریکی ارائه کرده‌اند (این عمل را کوانتومی کردن می نامند)، به عبارت دیگر دانشمندان دریافته‌اند که بار الکتریکی خود از واحد کوچک‌تری با نام بار بنیادی تشکیل شده‌است. بار یک الکترون تقریبا برابر با e=1.602\times10^{-19} C می‌باشد. (البته ذراتی با نام کوارک وجود دارند که باری به اندازه چند e⅓ دارند.) پروتون باری به اندازهٔ e و الکترون باری برابر با e- دارد. علم مطالعه ذرات باردار و توضیح ارتباط آنها با فوتون‌ها، الکترودینامیک کوانتومی نام دارد.

مقدمه

میدان الکتریکی ایجاد شده توسط بار مثبت

میدان الکتریکی ایجاد شده توسط بار منفی

بار یک ویژگی بنیادی در انواع ماده است که به صورت ربایش یا رانش الکتروستاتیکی در حضور ماده‌ای دیگر نمود پیدا می‌کند. بار الکتریکی ویژگیی است که سرچشمهٔ آن به بسیاری از ذرات زیراتمی ماده برمی‌گردد. بارِ ذراتی که به صورت آزاد یافت می‌شوند به اندازهٔ ضریب صحیحی از بار بنیادی (بار یک الکترون) است، در این حالت می‌گوییم بار الکتریکی یک کمیت گسسته است. مایکل فاراده در آزمایش‌های برق‌کافت خود دریافت که بار الکتریکی کمیتی گسسته است. رابرت میلیکان نیز در آزمایش‌های خود به این حقیقت می‌رسد و مقدار بار یک الکترون را نیز اندازه می‌گیرد.

بنابراین به صورت کمیت‌های گسسته می‌گوییم که بار یک الکترون ۱- و بار یک پروتون ۱+ است. ذرات بارداری که بار آن‌ها هم‌نام باشد یکدیگر را می‌رانند و ذراتی که بارهای ناهم‌نام دارند یک دیگر را می‌ربایند. قانون کولمب مقدار عددی نیروی الکتروستاتیک بین دو ذرهٔ باردار را بدست می‌آورد و بیان می‌دارد که مقدار این نیرو با اندازهٔ بار ذرات رابطهٔ مستقیم و با مربع فاصلهٔ بین دو ذره رابطهٔ وارون دارد.

مقدار بار یک پادذره دقیقا برابر با بار ذرهٔ متناظر با آن است ولی به صورت ناهم‌نام. کوارک‌ها هم باری برابر با ۱۳– یا ۲۳+ بار بنیادی دارند که البته هیچ کوارکی تاکنون به صورت آزاد یافت نشده است (دلیل نظری این مطلب در بحث آزادی مجانبی یافت می‌شود).

بار الکتریکی یک جسم برابر با مجموع بارهای الکتریکی ذرات سازندهٔ آن است. این بار به طور معمول کوچک است چون ماده از اتم‌ ساخته شده و اتم‌ها به تعداد مساوی از پروتون و الکترون در هستهٔ خود دارند، در نتیجه از نظر الکتریکی خنثی اند. یک یون، اتمی (یا دسته‌ای از اتم‌ها) است که یک یا چند الکترون ازدست داده‌است یا به‌دست آورده‌است. اتمی که الکترون از دست دهد بار خالص آن مثبت می‌شود که آن را کاتیون می‌نامیم و اتمی که الکترون بدست آورد بار خالص آن منفی می‌شود و آن را آنیون می‌نامیم.

در هنگام تشکیل یک جسم (ماکروسکوپیک) اتم‌ها و یون‌های تشکیل دهندهٔ آن‌ به گونه‌ای با هم ترکیب می‌شوند که جسم از نظر الکتریکی خنثی باشد و یا اینکه همیشه تمایل به ازدست دادن یا گرفتن الکترون و درنتیجه خنثی بودن دارند اما به‌ندرت جسمی پیدا می‌شود که به طور خالص بی‌بار (خنثی) باشد.

گاهی یون‌ها در سراسر مادهٔ تشکیل دهندهٔ جسم پخش شده‌است و به آن جسم‌ بار مثبت یا منفی داده است. هم‌چنین اجسام رسانای جریان الکتریسیته گاهی سخت‌تر یا راحت‌تر (بسته به نوع ماده) الکترون بدست می‌آورند یا از دست می‌دهند و بار خالص مثبت یا منفی پیدا می‌کنند. به این پدیده که جسمی دارای بار غیر صفر ساکن باشدالکتریسیتهٔ ساکن می‌گوییم. به راحتی با بر روی هم مالیدن دو مادهٔ ناهمسان، مانند کهربا روی یک پارچه خزدار یا شیشه روی ابریشم می‌توانیم الکتریسیتهٔ ساکن تولید کنیم. با این روش اجسام نارسانا می‌توانند مقدار قابل توجهی بار الکتریکی بدست آورند یا ازدست دهند. واضح است که وقتی یکی از این اجسام بار الکتریکی بدست می‌آورد دیگری دقیقا به همان اندازه بار الکتریکی از دست می‌دهد و این به دلیل قانون پایستگی بار الکتریکی است که همواره برقرار است.

گاهی مجموع بارهای الکتریکی یک جسم صفر است اما بار آن به صورت غیریکنواخت پخش شده است (مثلا به دلیل حضور یک میدان الکترومغناطیسی یا دوقطبی‌های موجود در ماده) در این حالت می‌گوییم جسمقطبی شده‌است. بار الکتریکی بدست آمده از قطبی‌شدن ماده را بار مرزی، بار تولید شده بر روی یک جسم که ناشی از بار گرفته‌شده یا داده‌شده به جسمی دیگر است را بار آزاد و حرکت الکترون‌ها را در یک جهت خاص در فلزات رسانا، جریان الکتریکی می‌نامیم.

یکاها

در سامانهٔ بین‌المللی یکاها واحد بار الکتریکی کولمب معادل ۱۰۱۸×۶/۲۴۲ برابر بار یک پروتون می‌باشد. بنابراین بار یک الکترون e=1.602\times10^{-19} کولمب است. کولمب تعریف می‌شود به: مقدار باری که از مقطع عرضی یک رسانای الکتریکی با شدت جریان یک آمپر در یک ثانیه عبور می‌کند. برای نشان دادن بار یا الکتریسیته از علامت Q استفاده می‌کنند. مقدار بار الکتریکی به طور مستقیم توسط یک برق نما یا به طور غیر مستقیم توسط گالوانومتر اندازه گیری می‌شود.

بعد از فهم مکانیک کوانتوم و توضیح مفهوم کلاسیک بار الکتریکی با ادبیات کوانتومی، جورج استونی در سال ۱۸۹۱ واحد الکترون را برای بار الکتریکی پیشنهاد کرد، این پیشنهاد قبل از کشفیات جوزف جان تامسوندر سال ۱۸۹۷ بود. امروزه واحد بار به شکل بار اولیه یا واحد بنیادین بار یا eنشان داده می‌شود. اندازه‌گیری بار باید به شکل ضریبی از بار بنیادی باشد حتی اگر مقدار بار برای یک جسم در ابعاد بزرگ باشد، همچنین مقدار بار یک عدد حقیقی است.

پیشینه

دستگاه تعادل پیچشی کولمب

تالس، فیلسوف یونانی سده ششم پیش از میلاد گفته است که با مالیدن پارچه خزدار روی مواد مختلف مانند کهربا می‌توان بار یا الکتریسیته تولید کرد، همچنین یونانی‌ها گفته بودند که دکمه های باردار کهربایی می‌توانند اجسام سبک مانند مو را به سمت خود بربایند و یا اگر کهربا را برای مدت طولانی مالش دهند ممکن است جرقه تولید شود. در سال ۱۶۰۰ دانشمند انگلیسی، ویلیام گیلبرت بازگشتی به بحث الکتریسیته داشت و واژه لاتین الکتریکوس گرفته شده از واژه یونانی ηλεκτρον به معنی کهربا را ایجاد کرد که البته خیلی زود این واژه به شکل انگلیسی electric و electricity تغییر پیدا کرد. در سال ۱۶۶۰ اتوفون گوریک تلاش‌های گیلبرت را دنبال کرد و احتمالا او کسی است که دستگاه تولیدکننده الکتریسیته ساکن را اختراع کرده است. از دیگر اروپاییان پیشرو در این زمینه می‌توان از رابرت بویل نام برد. بویل کسی است که در سال ۱۶۶۷ اظهار داشت که ربایش و رانش الکتریکی در فضای خالی نیز امکان‌پذیر است. استفان گری در سال ۱۷۲۹ مواد را به گروه‌های رسانا و نارسانا دسته‌بندی کرد.چارلز فرانسوا دو فی در سال ۱۷۳۳ گفت که: الکتریسیته از دو راه مختلف می‌آید که می‌توانند یکدیگر را خنثی کنند او این اظهارات را با عنوان تئوری “دو سیال” مطرح کرد که: وقتی شیشه روی ابریشم مالیده می‌شود شیشه باردار می‌شود یا بار شیشه‌ای و وقتی کهربا روی خز مالیده می‌شود کهربا باردار می‌شود یا بار صمغی. در سال ۱۸۳۹ مایکل فاراده نشان داد که تقسیم‌بندی ظاهری بین الکتریسیته ساکن، الکتریسیته جاری و بیوالکتریسیته درست نیست و همه این‌ها ناشی از رفتار الکتریکی قطب‌های مختلف دوقطبی‌ها است که به طور دلخواه یک را مثبت و دیگری را منفی نامیده‌ایم. بار مثبت، همان بار باقی مانده روی میله شیشه‌ای پس از مالش با ابریشم است.
بنجامین فرانکلین در قرن ۱۸ بیشترین تجربه را در این زمینه دارد. وی به حمایت از تئوری تک سیال الکتریکی بحث کرد. او تصور می‌کرد که بارالکتریکی یک سیال نامرئی است که در تمام مواد وجود دارد. مثلا او معتقد بود که شیشه است که در ظرف لیدن بار الکتریکی را انباشته می‌کند. او اثبات کرد که مالیدن دو سطح نارسانا روی هم باعث می‌شود که این سیال تغییر مکان دهد و همین‌طور جاری شدن این سیال جریان الکتریکی را ایجاد می‌کند. وی این را نیز اثبات کرد که اگر ماده مقدار کمی از این سیال را داشته باشد می‌گوییم بار منفی دارد و اگر مقدار اضافی از آن را داشته باشد می‌گوییم بار مثبت دارد. به طور دلخواه (یا به دلیلی که ثبت نشده است) وی انتخاب کرد که باری که روی شیشه انباشته شده، بار شیشه‌ای بار مثبت است و بار صمغی منفی است. همچنین او بود که واژه‌های بار و باتری را وارد فرهنگ الکتریسیته کرد.ویلیام واتسون نیز هم‌زمان با فرانکلین به همین نتایج رسید.

الکتریسیته ساکن و الکتریسیته جاری

الکتریسیته ساکن و جاری دو پدیده جداگانه‌اند، که هر دو در اثر بار الکتریکی‌اند و می‌توانند همزمان در یک جسم اتفاق افتند. الکتریسیته ساکن منبعی برای بار الکتریکی جسم است و اگر دو جسم که در تعادل الکتریکی نباشند به هم بچسبانیم تخلیه الکتریکی بین آنها اتفاق می‌افتد. تخلیه الکتریکی در بار الکتریکی هر دو جسم تغییر ایجاد می‌کند، در مقابل الکتریسیته جاری، جریان یافتن بارهای الکتریکی در یک جسم است که موجب ازدست‌دادن یا گرفتن هیچ‌گونه باری در آن جسم نمی‌شود. البته در تخلیه الکتریکی هم بارها از یکی به سمت دیگری جاری می‌شود اما این جریان خیلی کوتاه است که بخواهیم آن را جریان الکتریکی بخوانیم.

باردار کردن از راه تماس

یک آزمایس ساده

یک میله شیشه‌ای و صمغ را در نظر بگیرید، هیچ کدام از آنها خواص الکتریکی از خود نشان نمی‌دهند؛ آنها را باهم مالش دهید و همچنان در تماس با هم قرار دهید، همچنان هیچ اثر الکتریکی از خود نشان نمی‌دهند؛ حال آنها را از هم جدا کنید حالا یکدیگر را جذب می‌کنند. اگر میله شیشه‌ای دیگری را با صمغ دیگری مالش دهید و آن دو را جدا از هم قرار دهید و دو میله شیشه‌ای را در کنار هم و دو تکه صمغ را هم کنار هم از نقطه‌ای آویزان کنید می‌بینید که:

  1. دو میله شیشه‌ای یکدیگر را می‌رانند.
  2. هر دو میله شیشه‌ای صمغ را می‌ربایند.
  3. دو تکه صمغ یکدیگر را می‌رانند.

این پدیده‌های ربایش و رانش در هر دو ماده دیگری که مانند شیشه و صمغ باردار شده باشد دقیقا به همین شکل تکرار می‌شود. جسمی که شیشه را براند می‌گوییم به شکل شیشه‌ای باردار شده و اگر جسمی شیشه را جذب کند و صمغ را براند می‌گوییم به شکل صمغی باردار شده است.

امروزه در کاربرد علمی می‌گوییم جسمی که مانند شیشه باردار باشد بار مثبت و اگر مانند صمغ باردار باشد بار منفی دارد این علامت‌گذاری‌ها مانند قراردادهای ریاضی در علامت‌گذاری‌اند. هیچ نیرویی (ربایش یا رانش) بین یک جسم بدون بار و یک جسم باردار وجود ندارد.

در نگاه میکروسکوپی، راه‌های زیادی برای بوجود آمدن جریان الکتریکی وجود دارد مانند حرکت الکترون‌ها، حرکت حفره‌های الکترونی که مانند جابجایی بار مثبت می‌ماند و یا حرکت ذره‌های مثبت یا منفی یونی (یون ها یا هر ذره باردار دیگری در جهت خلاف یکدیگر در برق‌کافت یا پلاسما حرکت می‌کنند). حرکت هرکدام از این ذرات باردار در ماده ایجاد جریان الکتریکی می‌کند و معمولا هم گفته نمی‌شود که ذره در حال جریان بار مثبت حمل می‌کند یا منفی.

خواص

علاوه بر تمام خواص الکترومغناطیسی که از بار الکتریکی گفته شد، بار یک متغیر نسبیتی است به این معنی که هر ذره‌ای که بار Q دارد، مهم نیست که با چه سرعتی حرکت می‌کند، فرض می شود همواره بار Q را حفظ می‌کند. این خاصیت بار بوسیله آزمایش هم نشان داده شده‌است مثلا: بار یک هسته هلیوم (دو پروتون و دو نوترون در مجاورت یکدیگر در هسته اتم با سرعت بسیار زیاد در حال گردش‌اند) برابر است با بار دو هسته دوتریوم (یک پروتون و یک نوترون در مجاورت یکدیگرند که با سرعتی بسیار کمتر از آنچه در هسته هلیوم داشتند حرکت می‌کنند).

پایستگی بار الکتریکی

تمام بار الکتریکی یک سامانه بی‌دررو جدا از اینکه چه اتفاقی در آن بیفتد همواره ثابت باقی می‌ماند. این قانون برای تمام فرایندهای شناخته‌شده در فیزیک تعمیم داده می‌شود هم چنین برای نامتغیرهای گوج درتابع موج برای حالت محلی آن. پایستگی بار، معادله پیوستگی جریان الکتریکی را نتیجه می‌دهد. به شکل عمومی‌تر، بار کل برابر است با انتگرال حجمی V چگالی بار ρ که خود معادل است با انتکرال سطحی چگالی جریان J در سطح بسته S = ∂V که این مقدار جریان خالص I را نتیجه می‌شود:

- \frac{d}{dt} \int_V \rho \, \mathrm{d}V = \iint_{\partial V}\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\;\;\;\subset\!\supset \mathbf J\;\cdot\mathrm{d}\mathbf S = \int J dS \cos\theta = I.

بنابراین پایستگی بار الکتریکی، که با معادله پیوستگی جریان نشان داده شد نتیجه زیر را می‌دهد:

I = \frac{dQ}{dt}.

مقدار بار جابجا‌شده بین زمان‌های ti و tf از انتگرال زیر بدست می‌آید:

Q = \int_{t_{\mathrm{i}}}^{t_{\mathrm{f}}} I\, \mathrm{d}t

که Iجریان کل خروجی از سطح بسته است و Q بار الکتریکی در حجم تعیین شده توسط آن سطح می‌باشد.

کاربرد نیروهای الکتریکی بین اجسام باردار

نیروهای الکتریکی موجود بین اجسام باردار در صنعت کاربردهای زیادی دارند، که از آن جمله می‌توان به رنگ افشانی الکتروستاتیکی، گردنشانی، دود گیری، مرکب پاشی چاپگرها و فتوکپی اشاره کرد. به عنوان مثال در یک دستگاه فتوکپی دانه‌های حامل ماشین با ذرات گرد سیاه رنگی که تونر نام دارد، پوشیده می‌شوند. این ذرات بوسیله نیروهای الکتروستاتیکی به دانه حامل می‌چسبند.

ذرات با بار منفی تونر، سرانجام از دانه‌های حاملشان جدا می‌شوند. جذب این ذرات توسط تصویر با بار مثبت متن مورد نسخه برداری، که بر روی یک غلتک چرخان قرار دارد، صورت می‌گیرد. آنگاه ورقه کاغذ باردار ذرات تونر را روی غلتک جذب می‌کند و بعد از پخته شدن و نشستن ذرات بر روی کاغذ، کپی مورد نظر به‌دست می‌آید.

منبع : ویکی پدیا

قانون لنز

قانون لنز

قانون لنز که در مورد جریانهای القایی بکار می‌رود چنین بیان می‌شود که جریان القایی در مدارهای بسته در جهتی است که با عامل بوجود آورنده خود مخالفت می‌کند. این قانون علامت منفی موجود در قانون فاراده را توجیه می‌کند.

قانون لنز
علم فیزیک – قانون لنز

مقدمه

طبق قوانین القای الکترومغناطیسی اگر شارمغناطیسی گذرا از مدار تغییر کند، نیرو محرکه الکتریکی در مدار جاری می شود. با برقراری نیرو محرکه القایی در مدار، جریان الکتریکی القایی در آن جاری می شود. طبق قانون لنز جهت جریان القایی در مدار در جهتی است که میدان مغناطیسی حاصل از آن با تغییرات شار مغناطیسی گذرا از مدار مخالفت می کند. اگر چکشی را از بالای نردبانی رها کنیم، هیچ نیازی به قاعده‌ای که بگوید چکش به طرف مرکز زمین یا در جهت مخالف آن حرکت می‌کند، نداریم. اگر در این موقع کسی از ما بپرسد که از کجا می‌دانید که چکش سقوط خواهد کرد، بهترین پاسخی که می‌توانیم بدهیم این است که بگوییم، همیشه به این صورت بوده است و اگر بخواهیم جوابمان علمی‌تر باشد، می‌توانیم بگوییم که زمانی که چکش سقوط می‌کند، انرژی پتانسیل گرانشی آن کاهش می‌یابد و برعکس انرژی جنبشی آن افزایش پیدا می‌کند.

اما اگر چکش به جای سقوط ، به طرف بالا برود، در این صورت انرژی جنبشی و انرژی پتانسیل آن هر دو افزایش پیدا می‌کنند و این موضوع پایستگی یا بقای انرژی را نقض می‌کند. استدلال مشابه را می‌توان در مورد تعیین جهت نیروی محرکه الکتریکی که با تغییر شار مغناطیسی در یک مدار القا می‌شود، بکار برد، یعنی در این مورد اخیر نیروی محرکه القایی باید در جهتی باشد که با اصل پایستگی سازگار باشد و این با استفاده از قانون لنز توضیح داده می‌شود.

بر اساس ‎‎قانون القای فارادی، شار مغناطیسی عبوری از یک حلقه رسانا در صورتی که متغیر باشد (تغییر در اندازه و یا جهت) باعث القای یک ‎‎اختلاف پتانسیل الکتریکی در حلقه می‌شود که بوسیله رابطه زیر قابل بیان است:

– ε ولتاٰژ القا شده
– φ شار عبوری از حلقه

این اختلاف پتانسیل باعث جاری شدن جریانی در حلقه میشود. هر جریان گذرا از یک رسانا باعث ایجاد یک میدان مغناطیسی در فضای اطراف رسانا می‌شود که با توجه با رابطه زیر قابل بررسی است:

– H میدان مغناطیسی
– I جریان عبوری از رسانا
– N تعداد دورهای سیم پیچ
– l طول یک حلقه سیم پیچ

از طرف دیگر ‎‎میدان مغناطیسی مولد شار نیرویی بر جریان القا شده در حلقه اعمال می‌کند که برابر با رابطه زیر می‌باشد:

–  نیروی اعمال شده
– I جریان عبوری از رسانا
–  پاره‌ای از سیم داخل میدان مغناطیسی
–  میدان مغناطیسی

باید توجه شود که قوانین گفته شده فقط محدود به سیم‌پیچ و حلقه نمیشوند و قابل گستره به اشکال هندسی دلخواه (به طور نمونه مربع) نیز می‌باشند

به آسانی میتوان دید که دو میدان مغناطیسی نقش مهمی را در معادلات بالا ایفا میکنند. میدان اول، میدانی است القاگر که اختلاف پتانسیلی در دو سر حلقه ایجاد می‌کند و میدان دوم، میدانی است که به دلیل جاری شدن جریان در رسانا بوجود آمده است. این دو میدان همواره در خلاف جهت یکدیگر هستند. این پدیده را قانون لنز میخوانند. با توجه به قانون لنز میتوان جهت ولتاژ القاشده را تعیین کرد

تاریخچه

در سال ۱۸۳۴ ، یعنی سه سال بعد از این که فاراده قانون القا خود را ارائه داد (قانون القا فاراده)، هاینریش فریدریش لنز (Heinrich Friedrich Lenz) قاعده معروف خود را که به قانون لنز معروف است، برای تعیین جهت جریان القایی در یک حلقه رسانای بسته ارائه داد. این قانون به صورت یک علامت منفی در قانون القای فاراده ظاهر می‌گردد. به این معنی که در رابطه نیروی محرکه القایی یک علامت منفی قرار داده و اعلام کنند که این علامت بیانگر قانون لنز است.

تشریح قانون لنز

حلقه رسانایی را در نظر بگیرید که به یک گالوانومتر حساس متصل است. حال آهنربایی را در دست گرفته و به آرامی به این حلقه ، نزدیک کنید. ملاحظه می‌گردد که با نزدیک شدن آهنربا به حلقه عقربه گالوانومتر منحرف شده و وجود جریانی را در مدار نشان می‌دهد. این جریان را جریان القایی می‌گویند. حلقه جریان ، مانند آهنربای میله‌ای ، دارای قطب‌های شمال و جنوب است.

حال اگر آهنربا را از حلقه دور کنیم، باز هم گالوانومتر منحرف می‌شود، اما این بار انحراف در جهت مخالف است و این امر نشان دهنده این مطلب است که جریان در جهت مخالف در حلقه جاری شده است. اگر میله آهنربا را سر و ته کنیم و آزمایش را تکرار کنیم، باز همان نتایج حاصل خواهد شد، جز این که جهت انحراف‌های عقربه گالوانومتر عوض خواهند شد. برای تشریح این آزمایش با استفاده از قانون لنز به صورت زیر عمل می‌کنیم:

زمانی که آهنربا را به آرامی به حلقه نزدیک می‌کنیم، تعداد خطوط شار مغناطیسی که از حلقه می‌گذرد، تغییر می‌کند و همین امر سبب ایجاد یا القا جریان در حلقه می‌شود و چون در ابتدا هیچ جریانی وجود نداشت، این جریان باید در جهتی باشد که با هل دادن آهنربا به سمت حلقه مخالفت کند. برعکس ، اگر بخواهیم آهنربا را از حلقه دور کنیم، باز جهت جریان در حلقه عوض شده و از دور کردن آن جلوگیری می‌کند. یعنی در حالت اول اگر قطب N آهنربای میله‌ای در طرف حلقه باشد، جریان القایی در حلقه به گونه‌ای خواهد بود که در برابر آن یک قطب N ایجاد کند تا مانع نزدیک شدن آهنربا شود.

حال زمانی که آهنربا را از حلقه دور می‌کنیم، حلقه جهت جریان خود را عوض نموده و با ایجاد قطب S ، آهنربا را جذب کرده و مانع از دور کردن آن می‌شود.

قانون لنز و پایستگی انرژی

اگر توضیحات فوق بر اساس قانون لنز نبوده و عکس آن چیزی که گفته شد، اتفاق بیفتد، یعنی اگر جریان القایی به تغییری که باعث بوجود آمدن آن شده است، کمک کند، قانون بقای انرژی نقض می‌شود، یعنی اگر هنگام نزدیک کردن قطب آهنربا به حلقه در برابر آن قطب مخالف S ایجاد شده و آهنربا را جذب کند، در این صورت آهنربا باید به طرف حلقه شتاب پیدا کند و رفته رفته انرژی جنبشی آن افزایش پیدا کند و در همین هنگام انرژی گرمایی نیز ظاهر می‌شود. یعنی در واقع از هیچ ، انرژی بوجود می‌آید. بدیهی است که چنین عملی هرگز نمی‌تواند درست باشد.

بنابراین می‌توان گفت که قانون لنز چیزی جز بیان اصل بقای انرژی نیست که بطور مناسب در مورد مدارهای حامل جریان القایی بکار می‌رود.

ویژگی قانون لنز

قانون لنز مربوط به جریانهای القایی است و در مورد نیروی محرکه القایی صادق نیست، یعنی این قانون فقط در مورد حلقه‌های رسانا بکار می‌رود. اگر مدار باز باشد، معمولا می‌توان تصور کرد که اگر بسته بود چه اتفاقی می‌افتاد و بدین وسیله جهت نیروی محرکه القایی را معین نمود. مثلا اگر شار مغناطیسی گذرا از مدار به صورت درون سو باشد و کاهش پیدا کند، جریان الکتریکی در مدار القا می شود، که جهت این جریان القایی به صورت ساعتگرد خواهد بود تا میدان مغناطیسی حاصل از آن باعث تقویت میدان مغناطیسی شار گذرا از مدار باشد.

و اگر این شار افزایش یابد، جهت جریان القایی در جهتی خواهد بود که میدان مغناطیسی حاصل از آن بر خلاف جهت میدان شار باشد. پس جهت جریان پاد ساعتگرد است. بنابراین برای تشخیص جهت جریان القایی کافیست، با توجه به میدان شار گذرا از مدار، جریان را در جهتی اختیار کنیم که میدان مغناطیسی حاصل از آن با برخلاف تغییرات میدان مغناطیسی شار باشد.

قانون لنز ، اخبارفیزیک ، مقالات فیزیک ، مطالب فیزیک ، فیزیک مدرن ، علم فیزیک

منبع : دانشنامه رشد