اسپین الکترون

اسپین الکترون

مایکل فارادی، دانشمند مشهور انگلیسی نخستین کسی بود که در اواسط قرن نوزدهم میلادی به تاثیر میدان مغناطیسی روی پرتو های نوری که از یک محیط مادی عبور می کنند پی برد. تحقیقات فارادی در مورد تاثیر میدان مغناطیسی بر ذرات ماده و نور گسیل شده از آن ها توسط سایر فیزیک دانان ها همچنان ادامه یافت تا اینکه تقریبا پنجاه سال پس از او یک فیزیک دان هلندی به نام پیتر زیمان با آزمایش هایی که در دانشگاه لایدن انجام داد با پدیده جالب و عجیبی در این مورد مواجه شد.

اسپین الکترون
علم فیزیک – اسپین الکترون

زیمان به کمک آزمایش های طیف نگاری و بررسی طیف نوری گسیل شده از اتم ها به واسطه حضور در میدان مغناطیسی به چند خط طیفی متفاوت شکافته می شوند. اما علت این شکافتگی طیفی چه بود؟ مساله تبیین اثر زیمان و چند مساله حل نشده دیگر در فیزیک اتمی سبب شد که دو فیزیکدان هلندی به نام ساموئل گودسمیت و ژرژاولن بک در سال ۱۹۲۵ (۱۳۰۴) ایده اسپین الکترون را مطرح کنند. بر اساس این ایده، ذره الکترون مانند یک گوی یا فرفره بسیار کوچک با سرعت بسیار زیادی به دور خود می چرخند و بنابراین یک تکانه زاویه ی ذاتی – موسوم به اسپین – دارد. اما با توجه به اینکه الکترون یک ذره باردار است؛ بنابراین به واسطه چرخش ذاتی خود یک گشتاور دو قطبی مغناطیسی ذاتی هم خواهد داشت و در واقع وجود همین گشتاور دو قطبی مغناطیسی است که سبب می شود انرژی الکترون ها در حضور میدان مغناطیسی تغییر کرده و در نتیجه تراز های انرژی اتم نیز تغییر می کنند و همین مساله منجر به تغییر طیف اتم ها در حضور میدان مغناطیسی می شود. اما گودسمیت و اولن بک به نکته مهم دیگری هم در مورد اسپین الکترون پی بردند. آنها دریافتند که بردار اسپین الکترون ها برخلاف ذرات کلاسیک نمی تواند در هر امتداد دلخواهی قرار گیرد بلکه آنها همانند فرفره های اسرار آمیزی هستند که محور چرخش آنها تنها می تواند در امتداد های خاصی در فضا قرار بگیرد. بدین ترتیب مشخص شد که اسپین الکترون ها هم مثل بسیاری دیگر از پدیده ها، کمیتی کوانتومی و ناپیوسته است.

کشف اسپین کواتومی الکترون ها به خوبی توانست نتایج مرموز آزمایش دیگری را نیز که چند سال پیش تر توسط دو فیزیک دان آلمانی به نام های اتو اشترن و والتر گرلاخ در دانشگاه فرانکفورت صورت گرفته بود توضیح دهد. این فیزیکدان در آزمایش خود (که به آزمایش اشترن- گرلاخ شهرت یافت) باریکه ای از اتم های نقره را از یک میدان مغناطیسی غیر همگن عبور دادند. انتظار این بود که اتم ها به واسطه گشتاور مغناطیسی خود که جهت های تصادفی مختلفی داشتند، پس از عبور از میدان مغناطیسی به طور تصادفی منحرف شده و در نتیجه با توزیع یکنواختی به آشکار ساز مقابل خود برخورد کنند؛ اما در کمال شگفتی اتم ها یا فقط به مقدار مشخصی به سوی بالا منحرف می شدند یا به سوی پایین! پش از کشف ویژگی کوانتومی اسپین الکترون ها مشخص شد از آنجایی که اتم های نقره یک الکترون منفرد در لایه آخر اتمی خود دارند و با توجه به کوانتومی بودن اسپین الکترون- که تنها می تواند در دو امتداد مختلف به میدان مغناطیسی قرار گیرد- بنابراین اتم های نقره پس از عبور از میدان مغناطیسی غیر همگن فقط یا مقداری به بالا منحرف می شوند یا به پایین و حالت بینابینی مابین این دو وجود ندارد. بعد ها با کشف ذرات زیر اتمی دیگر نظیر پروتون، نوترون، میون و … مشخص شد که ویژگی کوانتومی اسپین منحصر به الکترون ها نیست و تمامی ذرات زیر اتمی اسپین کوانتومی دارند. با پیشرفت فیزیک کوانتومی طی دهه های بعد فیزیک دان ها توانستند با استفاده از این ویژگی کوانتومی ذرات، فناوری های بدیعی نظیر آنالیز مواد با استفاده از تشدید مغناطیسی هسته ای (NMR) تصویر برداری MRI و اسپین ترونیک را توسعه دهند.

اسپین الکترون ، اخبارفیزیک ، مقالات فیزیک ، مطالب فیزیک ، فیزیک مدرن ، علم فیزیک

منبع : مهروماه

ربات بازرس در بزرگ‌ترین برخورددهنده جهان

ربات بازرس در بزرگ‌ترین برخورددهنده جهان

برخورد دهنده بزرگ هادرونی در مرکز سرن که بزرگترین شتاب‌دهنده ذره جهان است، اکنون به یک بازرس رباتیک مجهز شده که بطور بلادرنگ بر سیستم تونلی این تاسیسات نظارت می‌کند.

این سیستم رباتیک “تیم” (TIM) نام دارد که مخفف ” قطار بازرسی مونوریل” است و در میان تونل‌های برخورددهنده بر روی مونوریل متصل به سقف حرکت می‌کند.

این مسیر در زمانی که این تونل برای برخورددهنده بزرگ الکترون -پوزیترون در سال ۱۹۸۹ ساخته شده بود، در آن ایجاد شد و به انتقال تدارکات و کارکنان می‌پرداخت.

این شتاب‌دهنده تا سال ۲۰۰۰ به کار مشغول بود اما در سال ۲۰۰۱ غیرفعال و برچیده شد.

پس از آن، تونل مذکور برای برخورددهنده بزرگ هادرونی مورد استفاده قرار گرفت.

ربات بازرس در بزرگ‌ترین برخورددهنده جهانعلم فیزیک – ربات بازرس در بزرگ‌ترین برخورددهنده جهان

ربات تیم با سرعت شش کیلومتر در ساعت در میان تونل‌ها حرکت کرده و با استفاده از مجموعه‌ای ابزار به نظارت بر ساختار، دما و درصد اکسیژن تونل می‌پردازد.

تیم همچنین به نقشه‌برداری از تابش پرداخته و تصاویر بصری و مادون قرمز از درون تونل را در اختیار اپراتورها قرار می‌دهد.

در حال حاضر دو ربات تیم در این تونل به کار گرفته شده‌اند که هر دو منتظر فرمان اپراتورها در برخورددهنده بزرگ هادرونی هستند.

برخورددهندهٔ هادرونی بزرگ یک شتاب‌دهندهٔ ذرّه‌ای و برخورددهنده مستقر در سازمان تحقیقاتی سرن در نزدیکی ژنو سوئیس است.

این پروژه در ۱۰ سپتامبر ۲۰۰۸ میلادی (۲۰ شهریور ۱۳۸۷ هجری شمسی) پس از ۲۰ سال آماده‌سازی، آغاز به کار کرد.

هدف از ساختن آن :

۱-شناخت اجرام مادّه در حدّ فاصل ‎  {\displaystyle 10^{-23}} سانتی‌متر

۲-آزمون مدل استاندارد ذرّات

۳-کشف اجزای یافت نشدهٔ مدل استاندارد

۴-آزمون نظریّهٔ ابرتقارن و نظریه وحدت بزرگ است.

از دیگر اهداف مهمّ این پروژه کشف ذرّه بنیادی هیگز است که فیزیکدانان ذرات بنیادی وجود آن را پیشگویی کرده‌اند.

ذرهٔ هیگز یا بوزون هیگز دخیل در ایجاد جرم در ذرّات بنیادی است.

در این آزمایشگاه پروتونها در یک تونل ۲۷ کیلومتری شتاب گرفته و به اندازه ۱۴ تریلیون الکترون ولت انرژی می‌گیرند و به هم برخورد می‌کنند

منبع : خبرآنلاین

ربات بازرس در بزرگ‌ترین برخورددهنده جهان ،

اخبار فیزیک ، مقالات فیزیک ، علم فیزیک

فیزیک کوانتوم ، فیزیک نجوم ، مکانیک ، الکترومغناطیس

قویترین برخورددهنده ذرات

چین به دنبال ساخت قویترین برخورددهنده ذرات جهان

دانشمندان چینی یک طرح اولیه مفهومی از ابربرخورددهنده ذرات را تکمیل کرده‌اند که بسیار بزرگتر و قویتر از همه شتاب‌دهنده‌های ذرات در زمین خواهد بود.

علم فیزیک - قویترین برخورددهنده ذراتقویترین برخورددهنده ذرات

به گزارش سرویس علمی ایسنا، وانگ ییفانگ، رئیس موسسه فیزیک انرژی بالا در آکادمی علوم چین اظهار کرد: ما طرح مفهومی اولیه را تکمیل کرده و اخیرا یک بازبینی دقیق بین‌المللی را سازمان‌دهی کرده‌ایم. طراحی مفهومی نهایی تا پایان سال ۲۰۱۶ تکمیل خواهد شد.

این موسسه تاکنون پروژه‌های اصلی فیزیک انرژی بالای چین از جمله برخورددهنده پوزیرترون‌الکترون پکن و تجربه راکتور نوترینوی خلیج دایا را اجرا کرده است.

اکنون دانشمندان یک شتاب‌دهنده جدید جاه‌طلبانه‌تر با هفت برابر انرژی بیشتر از برخورددهنده بزرگ هادرونی (LHC) در اروپا را ارائه کرده‌اند.

برخورددهنده پوزیترون‌الکترون دایره‌ای (CEPC) با محیط ۵۰ تا ۱۰۰ کیلومتر به تولید میلیون‌ها ذره بوزن هیگز خواهد پرداخت که به درک دقیقتر کمک خواهد کرد.

وانگ گفت: مسیر فنی مورد انتخاب ما با برخورددهنده بزرگ هادرونی که با برخورد دادن ذرات پروتون به یکدیگر، ذرات هیگز را به همراه بسیاری از ذرات دیگر تولید می‌کند، متفاوت است.

کارخانه بوزون هیگز تنها یکی از گامهای این طرح جاه‌طلبانه است. فاز دوم پروژه که برخورددهنده ابرپروتون-پروتون (SPPC) نام دارد، یک نسخه کاملا ارتقا یافته از برخورددهنده بزرگ هادرونی است.

برخورددهنده بزرگ هاردونی در اوایل سال ۲۰۱۳ برای ارتقای بیشتر خاموش شد و مجددا در ماه ژوئن سال جاری با سطوح انرژی دو برابر شده ۱۳ تراالکترون‌ولت آغاز بکار کرد.

ساخت مولکول‌های نوری امکان‌پذیر شد

ساخت مولکول‌های نوری امکان‌پذیر شد

فیزیکدانان موسسه استاندارد و فناوری آمریکا با همکاری محققان دانشگاه مریلند دریافتند که با تغییر در پارامترهای فرآیند اتصال ( مولکول‌های نوری ) فوتون‌های نوری می‌توان حرکت آنها را تحت کنترل درآورد .

علم فیزیک - مولکول‌های نوریمولکول‌های نوری

به گزارش سرویس علمی ایسنا منطقه خراسان، حدود دو سال قبل محققان دانشگاه کالیفرنیا با همکاری موسسه فناوری ماساچوست برای اولین‌ بار موفق به اتصال دو فوتون به یکدیگر شدند .

دانشمندان معتقدند که فوتون‌های نوری جزء ذرات بنیادی و یکی از شکل‌های تابش الکترومغناطیسی به شمار می‌روند .

در این تحقیق ( مولکول‌های نوری ) مشخص شد که ذرات بدون وزن فوتون می‌توانند مانند یک مولکول و با نیرویی پیچیده به هم متصل شوند .

پروفسور الکسی گوروشکو، فیزیکدان موسسه تحقیقاتی استاندارد و فناوری آمریکا اظهارکرد: نمی‌توانیم این پیوند ( مولکول‌های نوری ) را کاملا شبیه پیوند مولکولی قلمداد کنیم، اما از نظر ساختاری پیوند بین فوتون‌های نوری شباهت‌هایی با پیوند مولکولی دارد.

وی در ادامه افزود: در این بررسی دانشمندان نحوه ساخت ساختارهای پیچیده نوری را فرا گرفتند و برای نخستین بار پیوند بین فوتون‌های نوری امکان‌پذیر شد .

محققان معتقدند که با ورود به عرصه دنیای فوتون‌ها می‌توان کیفیت بسیاری از فناوری‌های بر مبنای نور مانند سیستم‌های ارتباطی و تصویر‌سازی را بهبود بخشید .

در واقع با انجام مهندسی بر روی فوتون‌های نوری  ( مولکول‌های نوری ) می‌توان فعل ‌و انفعالات بین آنها را تغییر داد .

پروفسور گوروشکو در مورد یکی از موارد تاثیر این فناوری جدید ( مولکول‌های نوری ) بر روی افزایش کیفیت تجهیزات آزمایشگاهی عنوان کرد: دانشمندان به کمک فناوری پیوند فوتون‌ها می‌توانند حسگرهای نوری را با دقت بسیار بالایی در آشکارسازهای نوری تنظیم کنند .

دانشمندان امیدوارند که با پیشرفت این فناوری  ( مولکول‌های نوری ) در آینده نزدیک سیستم پردازش رایانه‌های امروزی را به سیستم پردازش نوری تبدیل کنند که این امر علاوه بر افزایش چشمگیر سرعت، مصرف انرژی را به شدت کاهش می‌دهد .

منبع : خبرگزاری ایسنا

امواج الکترومغناطیس و سلامتی انسان

امواج الکترومغناطیس و سلامتی انسان

 

با گذشت لحظه ، لحظه های زمان، جهان دیگر همان جهان قبلی نیست، با توجه به تحقیقات وسیع علمی که در اقسی نقاط جهان در حال انجام است، جهان جدید، جهانی بسیار پیشرفته تر از چند لحظه قبل است. با توجه به این شرایط، ابزار آلات و وسایل مورد استفاده بشر نیز مطابق با این وضعیت در حال پیشرفت است.
امروزه از آنجایی که همه تلاشهای محققان بر این رابطه استوار است تا مرزها را بشکنند و صرفه جویی در زمان نمایند؛ لذا تحقیقات بر روی وسایل رادیویی و کنترل از راه دور با سرعت بی سابقه ای در حال انجام است، مهمتر از همه، کاربردهای بسیار زیاد این تکنولوژی در عرصه های نظامی باعث آن شده تا دولتها سرمایه گذاری های عظیمی را در این بخش انجام دهند ، شاید دیده نشدن این امواج توسط چشم مصلحتی بوده است از طرف خداوند ، چرا که در غیر اینصورت چشم ها از دیدن اینهمه تجمع امواج پیرامون خویش متحیّر می شدند، همانطوری که واضح است این تشعشعات رادیویی، ساتع شده از دستگاههای الکتریکی و دیجیتالی و کنترلی، خواه ناخواه با موجودات زنده برخورد فیزیکی خواهند داشت و بقول اسلوس(محقق قرن شانزدهم میلادی):
“هر ماده ای که قابلیت تاثیر بر فرآیندهای بیولوژیک را داشته باشد هم می تواند مفید باشد و هم مضر”
برخی از این امواج بقدری قوی هستند که حتی می توانند از دیواره های بسیار ضخیم بتونی چند متری هم عبور کنند چه رسد به بدن موجودات زنده که از بافتهای نرم ، تشکیل شده اند؛ این تشعشعات اگر بطور مستمر و دائم حتی با نیروی خیلی ضعیف هم باشند به احتمال قوی ممکن است باعث ایجاد اثرات منفی در موجودات شوند.
البته امواج الکترومغناطیس چیز تازه ای نیست؛ فقط سرعت استفاده از آن بسیار بالاست. موجودات از دیرباز با این امواج البته بصورت طبیعی سروکار داشته اند، جاذبه زمین ، جاذبه دیگر کرات و میدانهای مغناطیسی کوههای عظیم، در برخی نقاط جهان و مهمتر از همه مثلث برمودا و غیره ؛ از این قبیل بوده اند، اما مسئله ای که اینجا مطرح این است که این امواج طبیعی شاید بعلت برنامه ریزی دقیقشان، آسیب ها و ضررهایشان نیز حساب شده باشد و تاثیرات مهمی در حفظ چرخه عمر موجودات داشته باشند.
در قرآن کریم داریم؛ خداوند از خلقت آسمانها و زمین با ستونهای نامرئی خبر داده است ، که مسلما این ستونها همان امواج یا بقولی نیروهای الکترومغناطیس هستند که بصورت فوق العاده منظم طراحی و تنظیم شده اند یا در سوره “یس” آیه ۲۹ در رابطه با توصیف آخروالزمان داریم، که خداوند می فرمایند ” ان کانت صیحه واحده فاذا هم خمدون” یعنی ” نیست عقوبتشان جز یک صیحه عذاب آسمانی که به ناگاه همه هلاک شوند” ، آنطوری که اکنون برای ما قابل درک است این است که ، این صیحه می تواند نوعی از امواج الکترومغناطیس بصورت رادیویی یا ماکرویوی البته با پالسهای بسیار شدید و تند باشد.
کمی بعد از جنگ جهانی دوم آلمان غربی با ابراز تاسف از اینکه مردم منطقه ای در یکی از کوهستانهای دورافتاده فاقد برق و تلویزیون هستند ، بلافاصله برای آنها برق و تلویزیون فراهم کردند، قبل از ورود برق به این منطقه اهالی دارای بیشترین طول عمر در کره زمین بودند، اما ۱۰ سال پس از این ماجرا اهالی از بیماریهای ریوی ، قلبی ، کلیوی ، اعصاب و انواع سرطانها تلف می شدند.
بسیاری از محققان در زمینه طول عمر؛ سمت و سوی تحقیقات خود را به این طرف سوق دادند و با جدیت بیشتری این اثرات را مورد کنکاش قرار داده اند.
خلاصه اینکه همه موجودات و بخصوص ما انسانها در وضعیتی برگشت ناپذیر قرار گرفته ایم ، چراکه اکنون در جهان میلیونها ایستگاههای فرستنده رادیویی استاندارد و غیراستاندارد ساخته شده است و صدها ماهواره خارج از جو در حال بمباران تشعشعاتی کره زمین و حتی سایر کرات موجود در جهان است، علاوه بر همه اینها با اقدامات نادرست بشر لایه ازن ، آن محافظ خدا دادی موجودات از گزند تشعشعات فضایی بسیار خطرناک در حال نازک شدن و تخریب است، وجود دستگاههای پارازیت انداز بر روی برنامه های رادیویی و تلویزیونی در برخی کشورها ( که سرطان زا بودن شان مورد تایید دانشمندان است) و نیز وجود سیم کشی های فشار قوی غیر استاندارد در محدوده های شهری من جمله اقدامات غیر مسئولانه در این زمینه است، متاسفانه راه چاره ای نیست جز هماهنگ کردن خود با این وضعیت دشوار.
استفاده از دستگاههای با اطمینان ، بهره گیری از استانداردهای قابل اعتماد، محدود سازی ایستگاههای فرستنده غیر استناندارد در محدوده های شهری می تواند از جمله اقدامات ما باشد، باید توجه داشته باشیم وارد کردن هر چیز تازه بدلیل نو بودنش و تامین آسایش ظاهری و بدون توجه به جنبه های زیان آور شناخته شده و ناشناخته آن چندان کار افتخار آمیزی نمی تواند باشد، چراکه سلامتی ما مهمترین مورد است. پس از تحقیقات و آزمایشهای مکرر دانشمندان پی به اسرات زیان بار این مورد بردند لذا در سطح بین المللی دست به تدوین یک سری قوانین محدود کننده زدند، ترجمه زیر رابطه بین امواج الکترومغناطیس با سلامتی انسان و نیز قابلیتهای استانداردهای موجود را تحت بررسی قرار می دهد.

امواج الکترومغناطیس و سلامتی انسان :
حدودا ده سال قبل تنها منبع امواج الکترومغناطیس که بیشتر با آن مواجه می شدیم گرماخانه های میکروویو بودند. اما امروزه همه ما درحالیکه بی سیم های دیجیتالی و موبایل ها در دستمان است و یا اینکه پیجرهای فرستنده و گیرنده اطلاعات را به کمرمان بسته ایم در حال امرار معاش هستیم. از کامپیوترها و سایر وسایل جانبی آن نظیر چاپگرها (PRINTER) ، اسکنرها و اینفررد (INFRARED) ، بلوتوس و خیلی موارد دیگر بصورت مستمر استفاده می کنیم.
امروزه با وجود تراکم های مغناطیسی ما هنوز از همان استانداردهای قدیمی و البته ناکافی برای محاسبات تشعشعات رادیویی و ماکروویوی استفاده می کنیم. این استانداردها و قراردادها از نتایج تجارب بدست آمده در دهه بعد از جنگ جهانی دوم بدست آمده است. بعضی از آن قرار دادها برای مطالعه هایی در سطح پایین و اثرات بیولوژیکی متمرکز و محدود طراحی شده بودند و هیچ پیوندی با گرما نداشتند. اما تئوری الکترومغناطیس و ده ها تجربه دیگر بطور آشکار نشان داد که میادین مغناطیسی و رادیویی و ماکروویوی می توانند سلولها را بصورت مکانیکی و بدون ایجاد گرمای قابل توجه تحت تاثیر قرار دهند.
این قرار دادها در اواخر سال ۱۹۸۰ میلادی بوسیله انیستیتوی آمریکایی بنام IEEE طراحی شد. سایر قرارداد ها و استانداردها بر این اساس هستند که اگر تشعشعات رادیویی سلولهای زنده و بافتها را تحت تاثیر قرار دهند در اینصورت این فرآیند از طریق گرمایش بافت ها انجام می گیرد. بعضی از استانداردها و قراردادها به نامهای IEEE/ANS1 وجود دارند که پرتوافکنی خود را به جای اینکه در بعضی از قسمتهای بدن مثل سر یا لب انجام دهند، بر روی کل بدن اعمال کرده اند. این استانداردها که کل بدن را در بر گرفته اند و بر اساس گرما می باشند برای پرتوافکنی حداکثر مجاز به روی افرادی که در اطراف امواج رادیویی کار می کنند نظیر سربازان یا فروشندگانی که در اطراف رادار کار می کنند یا تکنسینهایی که در مراکز اصلی موبایل کار می کنند استفاده می شوند.
از این استانداردها برای طراحی آنتهای ارتفاعات که جریانات بی حفاظ را محدود می کنند نیز استفاده می شود. پیوند ممکن بینرادیو و ماکروویو که شکلی از تابش تشعشع رادیویی هستند و سلامتی بشر، باعث ایجاد موضوعات پیچیده و بحث انگیز در علم فیزیک و زیست شده است.
من نمی توانستم تمام این موضوعات پیچیده را در یک مقاله کوچک گرد آوری نموده و ذکر نمایم. بهرحال شواهد علمی زیادی موجود است مبنی بر اینکه استفاده بلند مدت از پرتوهای تابشی مثل انواع امواج رادیویی ، حداقل باعث ایجاد تغییرات ناچیزی در حرکت و کارکرد و نیز تغییراتی در ساختار مولکولها و سلولهایی در بافتهای زنده می شود. این شواهد امکان تحت تاثیر قرار گرفتن سلامتی افراد را در مقابل پرتو افشانی افزایش می دهد.
فیزیک مربوط به این موضوع با این حقیقت که همه چیزها زنده امواج الکترومغناطیسی را جذب و پخش می کنند، شروع به فعالیت کرد. در طی این روند آنها در سطح مولکولی، میدانهای الکترومغناطیسی را به نیروی مکانیکی تبدیل کردند. بدن ما پر از یونهای پایان ناپذیر در هسته سلولهای موجود در ماهیچه ها است. به علاوخ بیشتر مولکولهای معمولی بدن که شمال آب می باشند دارای توزیع و پخش بی رویه ی سوخت هستند.بنابراین آنها بوسیله میادین الکتریکی و یا میادین مغناطیسی که ناشی از حرکت یونها و مولکولها می باشند، تحت تاثیر قرار می گیرند.
پس میادین الکترومغناطیسی می توانند بطور فیزیکی حرکت کنند یا تطبیق یابند و یا حتی توزیع و پخش مولکولها و یونها را در بدن تغییر دهند. همچنین آنها می توانند میزانی از واکنشهای شیمیایی و توانایی مولکولها برای عبور از غشای پوستی را تحت تاثیر قرار دهند.
به علاوه اگر شتاب بار الکتریکی که نتیجه پیشرفت سریع پالسهای رادار می باشد رخ دهد باعث می شود که خود بافتهای بدن ، انرژی داخل بدن را بازتاب و پخش کنند که این یکی از اثرات پیچیده و شدید امواج رادیوی می باشد.
پیوند ممکن میان مولکول یا تاثیرات سلولی و سلامتی بشر موضوعی بحث انگیز می باشد. اما تعدادی از کارشناسان در مورد انسداد سلولهای خونی مغز مشغول انجام مطالعات می باشند. این مجموعه ی فیزیولوژیکی که شامل خطوط دفاعی ابتدایی و اولیه و همچنین حالت مویینگی در مغز می باشد ، مغز و سیستم های عصبی مرکزی را از عناصر خارجی و زیان بار حفظ می کند. موانع موجود بنظر می رسد که تراکم یونها را در بافتهای مغزی کنترل می کنند. تشعشعاتی که باعث حرکت و یا تغییراتی در یونها و مولکولها هستند می توانند قوی و نیرومند شوند، زمانیکه از طریق پالسهای الکترومغناطیسی که خیلی تیز و شدید اند ایجاد شوند. یکی وضعیت که باید به آن اشاره کنیم، رادار اخطار دهنده زود هنگام که با نیروی هوا کار می کند بنام سیستم “PAVE PAWS” شناخته می شود.
در سال ۱۹۹۴ “ریچارد آلبنز” محقق در مورد اساس سیستم های نیروی هوایی ، گزارش داد که پالسهای الکترومغناطیسی با موج کوتاه ، از نوع ساتع شونده بوسیله “PAVE PAWS” و رادارهای هم فاز مشابه ممکن است باعث ایجاد آسیبهای مکانیکی از طریق آنچه که پیش ماده و لازمه تشعشع نامیده می شود ، شود.
در طی یک دوره معین این چنین نتیجه گیری شده است که انفجارهای ثانویه رادیویی در داخل بافتهای زنده زمانیکه بوسیله پالسهای رادار ضربه می خورند ، اتفاق می افتد.
پیش ماده تشعشع یکی دیگر از منابه بالقوه و ثانویه هست، که باعث آسی باذفت می شود، که در استانداردهای پرتودهی نادیده گرفته شده است. “ریچارد آلبینز” در نشریه اش در سال ۱۹۹۴ میلادی نوشت : « نویسنده تابش مجازی را برای چنین پیش ماده ها و پالسهایی توصیه می کند.»
مطالعه دیگری که در مدت زمان بسیار کمی عنوان جهانی بخود گرفت و در ۲۰ ژوئن ماه قبل منتشر گردید ، یک موضوع دیگری را بیان کرد. یک سیستم واقع در سازمان هسته ای و رادیویی ایمنی در فنلاند گزارش داد که « تشعشعات موبایل بر روی صد گونه از پروتئینهایی که در سلولهای رشد یافته در آزمایشگاه که از خون شناور انسان گرفته شده است اثر می گذارد. »
رهبر این تیم بنام “دارویز لیزین” نتیجه این گزارش را در رابطه با سلامتی انسان ۱۰۰% تایید نکرد ، اما این فرضیه را مبنی بر اینکه یکی از مولکولهای تحت تاثیر که پروتئین ” hsp27 ” نامیده می شود، ممکن است همانند کلیدی باشد که شکافها را در انسداد خونی مغز باز کند و یا اینکه اجازه دخولهای چیزهای خارجی و زیان آور را به درون ممنوعه مغز بدهد.
نتایج مهم دیگری از طرف “هنری” که در دانشگاه “واشنگتون” در قسمت مهندسی کار می کند بدست امده است. “هنری” مدرکی بدست آورده است مبنی بر اینکه تاثیرات بیولوژیکی به وسیله جذب تشعشعات بافتهای ساتع کننده در سطح پایینی به اندازه ۰/۰۰۱ و با تراکم بسیار زیاد در حدود یک سانتی متر گالروواتا. این مقادیر بطور قابل توجهی از استانداردهای مجاز هم کمترند ، اثرات شامل آسیبهایی به DNA موجود در سلولها، افزایش انتشار کلسیم به داخل سلولها و کاهش تقسیمات سلولی بعد از تابش تشعشعات می باشند.
ما شواهد تجربی محکمی برای انتقاد و سوال در مورد اعتبار و درستی استانداردهای تنظیم شده داریم که فقط تاثیرات گرمایی را به حساب می آورند. ادامه استفاده از استانداردهایی که بر اساس میانگین تابش امواج رادیویی و تشعشعات برروی همه قسمتهای بدن حیوانات می باشد، یکی بی مسولیتی به مار می اید. و مهمتر از اینها که قسمت اعظمی از آسیبهای بافتی انجام شده بود قبل از اینکه یک حیوان آزمایشگاهی تغییرات رفتاری از خود نشان دهد یا اینکه در اثر تغییرات گرمایی بمیرد.
بعد چه؟ ما باید استانداردهای ایمنی خود را اصلاح نماییم و از استانداردهای محافظه کارانه جدید که از همه نتایج در دسترس استفاده می کند بهره گیریم و نه از قرارداده هایی که فقط از اطلاعات و داده های ابتدایی استفاده می کند. صنعت ارتباطات که در حال تکذیب می باشد با این واقعیات روبرو می شود. گروههای متخصص نظیر استانداردهای IEEE باید با U.S کار کنند. دولت ها و آزانسهای بین المللی هم اطمینان خاط داده اند که مطالعات دراز مدت و سطح پایین با تاثیرات غیر گرمایی در حال انجام است.
کنگره U.S باید فعالیت و ضروریت این مطالعات را تشخیص دهد و آنها را به زمانی که قانونی قانونی در صنعت ارتباطات ایجاد می شود و یا اصلاح می وشد به تعویق نیندازد.
برای بسیاری از ما موبایل بخش اجتناب ناپذیر زندگیمان شده است و ارتباطات ما را پراکنده کرده است و حال هیچ راه برگشتی نداریم ولی این حق را داریم که انتظار داشته باشیم که قراردادهای موجود لااقل سلامت زندگیمان را حفظ کنند.

امواج الکترومغناطیس و سلامتی انسان ، اخبارفیزیک ، مقالات فیزیک ، مطالب فیزیک ، فیزیک مدرن ، علم فیزیک

منبع : هوپا

اثر فوتوالکتریک

اثر فوتوالکتریک

اثر فوتوالکتریک (به انگلیسی: Photoelectric effect) پدیده‌ای است الکتروکوانتومی که در آن الکترون، بعد از جذب انرژی یک پرتوی الکترومغناطیسی مانند پرتوی ایکس و یا انوار مرئی، از ماده گسیل می‌شود.

اثر فوتوالکتریک
علم فیزیک – اثر فوتوالکتریک

این پدیده همچنین به اثر هرتز معروف است و این به خاطر کشفش توسط هاینریش هرتز است (هرچند امروزه این لفظ بلااستفاده می‌باشد). اثر فوتوالکتریک با فوتون‌هایی با انرژی پایین در حدود چند الکترون‌ولت مشاهده می‌شود. اگر فوتون به اندازهٔ کافی انرژی بالا داشته باشد (در حد چند کیلو الکترون‌ولت) پدیدهٔ دیگری به نام Compton scattering و اگر انرژی آن در حد چند مگا الکترون‌ولت باشد پدیدهٔ دیگری به نام Pair production رخ می‌دهد. مطالعهٔ پدیدهٔ فوتوالکتریک منجر به گام‌های مهمی در درک حقیقت کوانتومی نور شد.

این اثر یکی از بخش‌های مهم فیزیک است که در سال ۱۹۲۱ آلبرت اینشتین به خاطر آن جایزه نوبل فیزیک گرفت.

تاریخچه

اثر فوتوالکتریک توسط هاینریش هرتز در سال ۱۸۸۷ در جریان آزمایش‌هایی کشف شد که هدف عمده آنها تأئید پیشگویی‌های نظری ماکسول در مورد وجود امواج الکترومغناطیسی حاصل از جریان‌های الکتریکی نوسانی بود. اثر فوتوالکتریک پدیده‌ای است الکتروکوانتومی که در آن الکترون، بعد از جذب انرژی یک پرتوی الکترومغناطیسی مانند پرتوی ایکس و یا انوار مرئی، از ماده گسیل می‌شود. ما در این متن لفظ فوتوالکترون را به این الکترون گسیل شده اطلاق می‌کنیم.

مشاهدات اولیه

در ۱۸۳۹، الکساندر ادموند بکرل پدیدهٔ فوتوالکتریک را در یک الکترود مشاهده کرد، الکترودی که در داخل یک محلول شیمیایی یونی قرار داشت و محلول در معرض نور قرار گرفته بود. در ۱۸۷۳ میلادی اسمیت فهمید که سلنیوم یک مادهٔ نور-هادی است. ماده‌ای که مقاومت الکتریکی ان با شدت روشنایی تغییر می‌کند.

دهانهٔ جرقهٔ هرتز (hert’s spark gap)

در ۱۸۸۷ هاینریش هرتز، پدیدهٔ فوتوالکتریک و تولید و دریافت امواج الکترومغناطیسی را مشاهده کرد. او این مشاهدات را در مجلهٔ annalen der physik منتشر کرد. دستگاه گیرندهٔ امواج الکترومغناطیسی که او ساخته بود از یک سیم پیچ و دو گوی کوچک که در فاصلهٔ بسیار کمی از هم قرار داشتند تشکیل شده بود. زمانی که نوسانات الکترومغناطیسی در سیم پیچ باعث به وجود آمدن جریان الکتریکی در مدار گیرنده می‌شدند، آنگاه سیم پیچ که هر یک از دو سیم آن به یکی از این گوی‌ها متصل بود، این گوی‌ها را به طور متناوب دارای اختلاف پتانسیل الکتریکی می‌کرد و در نتیجه این بارهای الکتریکی شارج شده در گوی‌ها، در هوا تخلیه الکتریکی می‌شد (و این با ایجاد جرقه قابل دید بود) و آنگاه بود که هرتز می‌فهمید دستگاه گیرنده در حال دریافت امواج الکترومغناطیسی است. ما این گوی‌ها را دهانه جرقه می‌نامیم. او دستگاه گیرنده را در جعبه‌ای تاریک قرار داد تا جرقه‌ها را بهتر ببیند. به هر حال او متوجه شد که وقتی در جعبه بین گیرنده و فرستنده یک دیوارهٔ شیشه‌ای قرار می‌دهیم، ماکزیمم طول جرقه کاهش می‌یابد. و این بدان خاطر است که اگر شیشه قرار نداشت دوگوی پرتوی فرابنفش تولید شده در گیرنده را جذب می‌کردند و انرژی آن الکترون را در پرش از سطح گوی‌ها یاری می‌کرد. وقتی شیشه برداشته شد طول جرقه باید افزایش پیدا می‌کرد. او هیچ کاهشی را در طول جرقه مشاهده نکرد وقتی به جای شیشه، کوارتز را قرار داد. و این بدان خاطر است که کواتز نمی‌تواند از عبور امواج فرابنفش جلوگیری کند حال آنکه شیشه دارای چنین خاصیتی است. هرتز ماه‌ها تحقیق را به پایان رساند و نتایجی که به دست آورده بود را گزارش کرد. اما او تحقیق روی این پدیده را بیش از این ادامه نداد و نه حتی تلاشی نکرد تا بفهمد که این پدیده از کجا آمده.

جی. جی. تامسون:الکترون

در سال ۱۸۹۹، تامسون روی پرتوی فرابنفش در لامپ تولید پرتوی ایکس تحقیق می‌کرد. متاثر از کارهای جیمز کلارک ماکسول تامسون دریافت که پرتوهای کاتدی از ذرات دارای بار منفی تشکیل شده‌اند که بعدها این ذرات الکترون نام گذاری شد اما تامسون آنها را کورپوسل(corpuscles) می‌خواند. در این تحقیق تامسون دو صفحهٔ فلزی (الکترود) را در یک لولهٔ خلاء قرار داد و آن را تحت تابش فرکانس بالا قرار داد. تامسون فکر می‌کرد که میدان الکترومغناطیسی در حال نوسان اتم را نیز مجبور به نوسان می‌سازد و بعد از رسیدن به یک دامنه خاص که توسط تشدید نوسان اتم به آن می‌رسیم، اتم یک کورپوسل زیر اتمی از خود گسیل می‌دارد و میزان آن جریان را تامسون اندازه می‌گرفت. مقدار این جریان با رنگ و شدت تابش متغیر بود. در شدت تابش بالاتر و یا فرکانس‌های بالا جریان هم بیشتر می‌شد.

نیروی موجی

 
یک موتور فوتو الکترونیک US685957 که اشعه روی یک رسانای عایق‌دار تابیده می‌شود که به یک خازن متصل است. خازن شارژ الکتریکی می‌کند

نیکلا تسلا پدیدهٔ فوتوالکتریک را در سال ۱۹۰۱ توصیف کرد. او این پرتوها را به عنوان نوسان اتر با طول موجی کوچک که اتمسفر را یونیزه می‌کرد در نظر گرفت. در پنجم نوامبر ۱۹۰۱ او گواهینامه ثبت اختراعی را از اداره ثبت اختراعات آمریکا(US Patent) دزیافت کرد که شارژ و دشارژ یک رسانای فلزی را با این پرتوها توسط نیروی موجی توصیف می‌کرد. تسلا از این پدیده برای شارژ الکتریکی یک خازن توسط یک رسانا استفاده کرد. این وسیله به یک موتور پله‌ای که توسط جریان متناوب فوتوالکتریک کار می‌کند و توسط تسلا به ثبت رسیده را نشان می‌دهد.
در حقیقت یک صفحهٔ فلزی صیقلی که تحت تابش انرژی موجی قرار دارد (مانند نور خورشید) دارای بار مثبتی خواهد شد اگر الکترون گسیل کرده باشد. وقتی صفحه دارای بار مثبت می‌شود، خازن نیز تحت تاثیر میدان الکتریکی ایم بار مثبت دارای بار منفی می‌گردد و بنابراین جریانی در دو سر خازن به وجود می‌آید.

مشاهدات ون لنارد

در ۱۹۰۲، فیلییپ آنتوان ون لنارد، مشاهده کرد که انرژی الکترون را می‌توان با تغییر فرکانس نور ورودی تغییر داد. او از یک لامپ قدرتمند قوسی استفاده کرد، چیزی که او را قادر می‌کرد تا تغییرات شدید در شدت تابش را مورد بررسی قرار دهد و به اندازهٔ کافی نیرو داشت تا بتواند روی تغییرات پتاسیل و در نتیجه تغییرات فرکانس نور را مورد بررسی قرار دهد. آزمایش او به طور مستقیم پتانسیل الکتریکی را اندازه می‌گرف و نه انرژی جنبشی الکترون را. او رابطهٔ انرژی الکترون را با ماکزیمم ولتاژ قطع به دست آورد. او همچنین فهمید که ماکزیمم انرژی جنبشی الکترون با فرکانس نور مرتبط است. برای مثال افزایش فرکانس پرتوی ورودی، افزایش ماکزیمم انرژی جنبشی محاسبه شده برای الکترون تحت عمل آزادسازی را نتیجه می‌دهد-پرتوی فرابنفش نیاز به پتانسیل قطع بیشتری نیاز دارد تا جریان را در مدار از کار بیندازد تا نور آبی. اما نتیجهٔ مشاهدات ون لنارد به خاطر سختی انجام آزمایش کیفی بود نه کمی زیرا آزمایش باید روی یک صفحه فلزی بسیار صیقلی انجام می‌شد تا اینکه نتایج قدری دقیق تر گردند، اما آن در چند دقیقه اکسید می‌شد حتی در خلاء جزئی که او ایجاد کرده بود. جریانی که توسط الکترون گسیل شده از سطح به دست می‌آمد نیز به شدت نور مربوط می‌شد. با دو برابر شدت تابش دو برابر الکترون گسیل می‌شد اما ون لنارد چیزی از فوتون نمی‌دانست.

اینشتین: نور کوانتومی

توصیفات ریاضی البرت اینشتین در سال ۱۹۰۵ میلادی، از اینکه چگونه اثر فوتوالکتریک به‌وسیلهٔ جذب کوانتوم نور (چیزی که بعدها فوتون نام گرفت) پدید می‌آید، در مقاله‌ای با عنوان «دیدگاه ابتکاری در باب تولید و تبدیل نور» ارائه شد. این مقاله توصیف ساده‌ای را از کوانتوم نور یا همان فوتون بیان می‌کرد و نشان داد که چگونه این پدیده را به عنوان اثر فوتوالکتریک توصیف کنیم. توصیف سادهٔ او بر این حساب که جذب یک کوانتوم منفرد از نور بود، توانست خصوصیات این پدیده و فرکانس آستانه را توجیه کند. تفسیر انیشتین از پدیدهٔ فوتوالکتریک برای او جایزهٔ نوبل را در سال ۱۹۲۱ به ارمغان آورد.

ایدهٔ کوانتومی بودن نور با قوانین منتشر شدهٔ ماکس پلانک از تابش جسم سیاه آغاز شد («در باب قانون توزیع انرژی در یک طیف عادی»،annalen der physik ۴(۱۹۰۱)) که با درست فرض کردن اینکه نوسان‌های هرتز فقط می‌توانستند در انرژی E که با فرکانس f مرتبط است موجود باشند، توسط فرمولE = hf. با درست فرض کردن اینکه نور حقیقتاً از بسته‌های جدای انرژی تشکیل شده، انیشتین معادلات پدیدهٔ فوتوالکتریک را نوشت که با آزمایش‌ها مطابق بودند (معادلات توضیح می‌دادند که چرا انرژی یک الکترون فقط به فرکانس پرتوی ورودی مرتبط بود و نه به شدت تابش، یک منبع فرکانس پایین هیچ فوتونی با انرژی کافی از خود گسیل نمی‌کرد تا یک الکترون را از جای بکند). این یک گام نظری بزرگ بود و حقیقت کوانتومی نور بسیار مستحکم بوده و هست. ایدهٔ کوانتومی بودن نور با تئوری موجی نور که نظریه‌های ماکسول را دنبال می‌کرد در تضاد بود. نظریه‌های ماکسول که فرض بخش پذیری (قابلیت تقسیم شدن) بینهایت انرژی در یک سیستم فیزیکی را اثبات می‌کرد. حتی بعد از آزمایش‌های که نشان داد معادلات انیشتین برای پدیدهٔ فوتوالکتریک صحیح بودند، استحکام نظریهٔ کوانتومی بودن نور افزایش یافت، و این از وقتی بود که معادلات انیشتین معادلات ماکسول را نقض کرد، معادلاتی در آن هنگام دیگر به طور کامل درست فرض شده بود .
کارهای انیشتین پیش بینی کرد که انرژی یک الکترون جداشدهٔ منفرد با فرکانس پرتوی ورودی یک رابطهٔ خطی دارد، یعنی با افزایش یکی دیگری هم افزایش می‌یابد، شاید به طور شگفت آوری که تا آن هنگام هنوز تجربه نشده بود. در سال ۱۹۰۵ تمامی این مفاهیم درک شد اما نه از طریق آزمایش. تا اینکه در سال ۱۹۱۵ رابرت اندروو میلیکان نشان داد که انیشتین درست می‌گفت.

الکترون در سوال «ذره‌ای یا موجی؟

اثر فوتوالکتریک به پیش برد مفهوم طبیعت دوگانه نور، که نور امواج و ذرات را در شرایط متفاوت نشان می‌دهد، کمک بسزایی کرد. این پدیده از طریق توصیف کلاسیک نور به عنوان موج غیر قابل درک بود، زیرا که انرژی الکترون گسیل شده به شدت تابش بستگی نداشت. این تئوری کلاسیک پیش بینی کرده بود که الکترون می‌تواند در طول یک زمان مشخص انرژی دریافتی را انباشته کرده و بعد گسیل شود. برای اینطور تئوری‌های کلاسیک که در یک شرط پیش پرشده کار می‌کند لازم به سماجت روی خود ماده می‌باشد. ایدهٔ پیش پرشدگی در کتاب میلیکان (الکترون مثبت و منفی) و در کتاب کامپتون و آلیسون (پرتوی ایکس در تئوری و آزمایش) بحث شده‌است.

موارد استفاده فوتو دیودها و فوتو ترانزیستورها

سلول‌های خورشیدی که برای تولید انرژی خورشیدی مورد استفاده قرار می‌گیرند و دیودهای حساس به نور، هرکدام به نوعی از پدیدهٔ فوتوالکتریک استفاده می‌کنند، اما نه با الکترونی که از ماده جدا بشود. در نیم هادی‌ها، نور حتی با انرژی پایین، مانند انوار مرئی می‌توانند الکترون‌ها را از نوار ظرفیت جدا کرده و آنها را به نوار رسانش با انرژی بالاتر انتقال دهند، جایی آنها با تحت کنترل بودن می‌توانند در یک ولتاژ متناسب با گاف انرژی جریان الکتریکی نولید کنند.

سنسورهای تصویر

دوربین‌های تلویزیونی در اوایل دورهٔ ظهور تلویزیون از پدیدهٔ فوتوالکتریک استفاده می‌کردند. انواع دوربین‌ها از مواد هادی حساس به نور استفاده می‌کنند.

حساسه‌های سیلیکونی تصویر یا همان تراشه‌های CCD که به طور بسیار زیاد در دوربین‌های موبایل استفاده می‌شود بر پایه نوعی از اثر فوتوالکتریک طراحی شده که در آن فوتون، الکترون را از نوار ظرفیت خارج می‌کند که در داخل خود سیستم جای دارد و نه در خارج آن، یعنی هیچ الکترونی از سیستم خارج نمی‌گردد.

الکتروسکوپ برگه طلا

علم فیزیک – اثر فوتوالکتریک
 
الکتروسکوپ برگه طلا

این الکتروسکوپ برای تشخیص الکتریسیته ساکن طراحی شده، بار الکتریکی قرار داده شده روی کلاهک، روی میله و برگه پخش می‌شود، و چون هردو بارهای هم نام دارند، میله و برگه هر دو یکدیگر را می‌رانند. و این باعث دور شدن برگه از میله می‌شود. الکتروسکوپ یک وسیلهٔ مهم برای توجیه پدیدهٔ فوتوالکتریک می‌باشد. بیایید فرض کنیم که الکتروسکوپ با بار منفی بار دار شده‌است. و ما می‌توانیم بگوییم که یک به هم خوردگی تعادل بار روی میله موجود است (زیرا می‌دانیم که قبل از این میله خنثی بوده و جسم خنثی هم دارای تعادل بار مثبت و منفی می‌باشد و برای همین هم خنثی است). اما اگر ما نوری با فرکانس بالا روی کلاهک آن بتابانیم، بار منفی از بین می‌رود و برگه به سر جای خور بر می‌گردد و در کنار میله قرار می‌گیرد. و این بدان خاطر می‌باشد که فرکانس پرتو از فرکان آستانهٔ کلاهک بالاتر است و فوتونی که روی سطح فلز فرود می‌آید به اندازهٔ کافی انرژی دارد تا الکترون را از سطح کلاهک جدا کند و بار منفی آن را کاهش دهد. این می‌تواند الکتروسکوپ باردار منفی را بی بار کرده و آن را با بار مثبت شارژ کند. اما اگر پرتوی ورودی فرکانسی پایین‌تر از فرکانس آستانهٔ کلاهک داشته باشد، الکتروسکوپ هیچگاه بار منفی خود را از دست نمی‌دهد و مهم نیست که چه مقدار از زمان نور به کلاهک بتابد.

فضاپیماها

اثر فوتوالکتریک باعث بار دار شدن فضاپیمایی می‌شود که در فضا در معرض نور خورشید قرار دارد و این فضا پیما را با بار مثبت شارژ می‌کند. و این می‌تواند تا ده‌ها ولت انباشته شود. و می‌تواند یک مشکل بزرگ باشد زیرا که قسمت‌های دیگر فضاپیما که در سایه قرار دارد تا چند هزار ولت دارای پتانسیل الکتریکی می‌شود و همچنین دارای بار منفی است. و این برهم خوردگی توازن بار الکتریکی می‌تواند روی قطعات الکترونیکی فضا پیما تخلیه شود و آنها را از کار بیندازد. بار الکتریکی مثبت ساکن تولیدی توسط پدیدهٔ فوتوالکتریک دارای یک محدودیت است، زیرا یک جسم با بار الکتریکی بسیار زیاد الکترون‌ها را سخت تر از دست می‌دهد.

غبار ماه

نوری که از خورشید بر ماه می‌تابد، ذرات غبار سطح ماه را دارای بار الکتریکی می‌کند و ذرات غبار دارای بار حالا همدیگر را دفع می‌کنند و از سطح ماه بالا می‌روند. و این پدیده خود را همانند اتمسفری از غبار آشکار می‌سازد و به صورت لکه‌ای تاریک و یک تابش تاریک بعد از تابش نور خورشید به سطح ماه آشکار می‌شود و قابل دید است.
این پدیده اولین بار در خلال برنامهٔ نقشه برداری در دهه ۶۰ از سطح ماه عکس برداری شد. این گمان می‌رود که کوچکترین ذرهٔ غبار تا کیلومترها از سطح ماه بالا می‌رود و ان ذرات، زمانی که شارژ و دشارژ می‌شوند، روی آتشفشان‌ها حرکت می‌کنند.

ادوات دید در شب

در یک دوربین دید در شب فوتون‌ها به یک صفحهٔ گالیوم آرسنید برخورد می‌کنند و بر اساس پدیدهٔ فوتوالکتریک الکترون‌ها را مجبور به جداشدن از سطح فلز می‌کنند. و این الکترون‌ها بعد از انبوه سازی، به صوری آبشاری روی یک صفحه از فسفر می‌ریزند و آن را روشن می‌کنند.

نظریه

انیشتین در سال ۱۹۰۵ رابطهٔ زیر را پیشنهاد نمود که اکنون تایید شده‌است:

h\nu=W+K \!

که در آن

h ثابت پلانک
\nu بسامد موج
Wتابع کار فلز
K انرژی جنبشی الکترون

به طور خلاصه می‌توان گفت که اگر نوری از امواج الکترومغناطیسی بر سطحی (بویژه) فلزات بتابد از جسم مقداری الکترون خارج خواهد شد که مقدار الکترون‌ها به شدت نور تابیده شده و انرژی الکترون‌ها به طول موج (انرژی فوتونها) بستگی دارد و اگر انرژی فوتون از حد آستانه پایین‌تر بیاید دیگر الکترونی بیرون نخواهد رفت بررسی این مسئله با فیزیک کلاسیک غیرممکن است و به کمترین فرکانسی که اثر فیک روی می‌دهد (الکترون از سطح فلز جدا شود) را فرکانس قطع می‌گویند.

ولتاژ قطع

ولتازقطع ولتاژی است که اگر دو سر الکترود‌ها اعمال شود دیگر پدیده فوتو الکتریک به وجود نمی‌آید. از نظر عددی ولتاژ قطع برابر است با بیشینه انرژی الکترون های گسیل شده(برحسب الکترون ولت)است. یعنی زمانی که انرژی الکترون های گسیل شده ۱۰الکترون ولت باشد ولتاژ قطع۱۰ولت است.

ولتاژ قطع زمانی باعث توقف پدیده فوتو الکتریک می‌شود که نور تابشی به الکترود مثبت برخورد کند.

نتایج آزمایش بر روی اثر فوتوالکتریک

  1. برای یک فلز و فرکانس پرتوی ورودی، آهنگ افزایش تعداد فوتوالکترون‌های گسیل شده رابطهٔ مستقیم با شدت تابش پرتوی ورودی دارد.
  2. برای یک فلز، یک فرکانس مینیمم مشخصی از پرتوی ورودی وجود دارد که پایین‌تر از آن هیچ فوتوالکترونی گسیل نمی‌شود، که ما آن را فرکانس آستانه(فرکانس قطع) می‌نامیم.
  3. در فرکانس‌های بالاتر از فرکانس آستانه، ماکزیمم انرژی جنبشی هر فوتوالکترون گسیل شده به شدت تابش پرتوی ورودی وابسته نیست و البته به فرکانس پرتو بستگی دارد.
  4. شدت نور تاثیری بر ولتاژ قطع ندارد.(ولتاژ قطع توسط بسامد نور مشخص می‌شود.)
  5. فرکانس نور تاثیری بر بیشینه شرت جریان ندارد.(شدت نور تعیین کننده بیشینه شدت جریان است.)
  6. زمان تاخیر بین تابش پرتوی ورودی و گسیل فوتوالکترون خیلی کوچک است، کمتر از ۱۰^-۹ ثانیه.

میکروسکوپ الکترون عبوری

میکروسکوپ الکترون عبوری

چکیده مقاله

در پژوهش‌های مربوط به خواص مواد نانوساختاری میکروسکوپ الکترونی یکی از مهم‌ترین و پرکاربردترین دستگاه‌هایی است که مورد استفاده قرار می‌گیرد. در اغلب مطالعات انجام‌شده روی خواص مواد نانوساختاری برای تعیین اندازه و شکل آنها از میکروسکوپ عبور الکترونی استفاده شده است. این روش اندازه و شکل ذرات را با دقت حدود چند دهم نانومتر به دست می‌دهد که به نوع ماده و دستگاه مورد استفاده بستگی دارد. امروزه در بررسی خواص مواد نانوساختاری از میکروسکوپ عبور الکترونی با وضوح بالا (High-Resolution) استفاده می‌شود. علاوه بر تعیین شکل و اندازه ذرات به وسیله میکروسکوپ عبور الکترونی با استفاده از پراش الکترون و سایر سازوکارهای موجود در برخورد الکترون با ماده برخی ویژگی‌های دیگر مواد نانوساختاری مانند ساختار بلوری، ترکیب شیمیای را می توان بدست آورد.

متن مقاله

مقدمه
خواص مواد نانوساختاری به شکل و اندازه آنها بستگی دارد و از این‌رو مطالعه پیرامون شکل، اندازه و آرایش مواد نانوساختاری از نظر فهم پدیده‌های موجود و درنهایت استفاده از آنها در کاربردهای مختلف ضروری است. روش‌های مختلفی برای تعیین شکل و اندازه ذرات به کار می‌رود که ازجمله آنها می‌توان به میکروسکوپ نیروی اتمی (AFM)، طیف‌سنجی عبور نوری، پراش اشعه X و مانند آن اشاره کرد. برخی از این روش‌ها شکل و اندازه ذرات را به طور مستقیم به دست نمی‌دهند. برای مثال در پراش اشعه X اندازه ذرات از رابطه زیر به دست می‌آید:

 

که رابطه‌ فوق برای تعیین اندازه نانوذرات دقیق نیست و در اندازه‌های پایین دارای خطای قابل ملاحظه‌ای نسبت به مقادیر واقعی است. این روش برای نانوذرات غیربلوری نیز مناسب نیست. از طیف عبور نوری مواد نانوساختاری نیز می‌توان برای تعیین اندازه ذرات استفاده کرد که روش اندازه‌گیری و تعیین قطر ذرات پیچیده می‌باشد و برای برخی از مواد قابل استفاده نیست. باتوجه به مطالب فوق استفاده از روشی برای تعیین اندازه و شکل ذرات بادقت مناسب در حوزه پژوهش‌های مواد نانوساختاری بسیار مهم و مورد نیاز جدی است.
در پژوهش‌های مربوط به خواص مواد نانوساختاری میکروسکوپ الکترونی یکی از مهم‌ترین و پرکاربردترین دستگاه‌هایی است که مورد استفاده قرار می‌گیرد. در اغلب مطالعات انجام‌شده روی خواص مواد نانوساختاری برای تعیین اندازه و شکل آنها از میکروسکوپ عبور الکترونی استفاده شده است. این روش اندازه و شکل ذرات را با دقت حدود چند دهم نانومتر به دست می‌دهد که به نوع ماده و دستگاه مورد استفاده بستگی دارد. امروزه در بررسی خواص مواد نانوساختاری از میکروسکوپ عبور الکترونی با وضوح بالا (High-Resolution) استفاده می‌شود. علاوه بر تعیین شکل و اندازه ذرات به وسیله میکروسکوپ عبور الکترونی با استفاده از پراش الکترون و سایر سازوکارهای موجود در برخورد الکترون با ماده برخی ویژگی‌های دیگر مواد نانوساختاری مانند ساختار بلوری، ترکیب شیمیای را می توان بدست آورد.
برخی از روش‌های مورد استفاده در میکروسکوپ عبور الکترونی برای بررسی ویژگی‌های مواد عبارتند از:
● تصویربرداری (میدان تاریک و میدان روشن)
● پراش الکترون
● پراش الکترون با باریکه واگرا (SAD)
● تصویربرداری Phase-Contrast در (HRTEM)
● تصویربرداری Z-Contrast
● طیف‌نگاری پاشندگی انرژی اشعه X (EDS)
● طیف‌نگاری اتلاف انرژی الکترون (EBLS)
اساس کار میکروسکوپ عبور الکترونی
برخورد الکترون با ماده شامل سازوکارهای مختلفی می‌باشد که از مهم‌ترین آنها می‌توان به برخورد و تولید الکترون ثانویه پس‌پراکندگی و پیش‌پراکندگی تولید اشعه X و الکترون اوژه اشاره کرد. باتوجه به سازوکارهای موجود تحلیل نتایج هریک از این سازوکارها داده‌هایی را در مورد شکل و اندازه، ساختار و ترکیب شیمیایی ماده به دست می‌دهد. ابتدا نحوه اندرکنش الکترون- ماده و تصویربرداری میکروسکوپ عبور الکترونی را بررسی کرده و سپس به سایر روش‌های مورد استفاده ازجمله پراش الکترون و EDS می‌پردازیم.

برهم‌کنش‌های الکترون با اتم و تفنگ الکترونی
پرتو الکترونی به روش‌های مختلفی تولید می‌‌شود که از مهم‌ترین آنها می‌توان به گسیل ترمویونیک ( Thermoionic Emission ) و گسیل میدانی اشاره کرد. برای گسیل ترمویونیک به طور معمول از یک المان داغ استفاده می‌کنند که تا دمای حدود ۲۸۰۰ درجه کلوین گرم می‌شود. جنس المان اغلب از تنگستن یا LaB6 است. مجموعه المان را نسبت به شبکه‌های شتاب‌دهنده در پتانسیل منفی نگه می‌دارند و الکترون‌های تولیدشده در اثر پدیده ترمویونیک در پتانسیل بالا شتاب گرفته و انرژی بالایی کسب می‌کنند.

شکل۱- اساس گسیل ترمویونیک و تولید باریکه الکترونی

در روش گسیل میدانی از پدیده تونل‌زنی استفاده می‌‌شود. در این حالت با اعمال میدان بالا در سطح فلز و کاهش سد پتانسیل الکترون می‌تواند تونل زده و از سطح فلز خارج شود. در این صورت می‌توان شار بزرگی از الکترون ایجاد کرد. مقدار بار ایجادشده در این پدیده به میدان اعمال‌شده بستگی دارد. برای بدست‌آوردن بهره بالا برای تولید جریان باید از فلزی با نوک بسیار تیز استفاده کرد و برای جلوگیری از اکسیدشدن خلاء خیلی بالا نیز (Ultra High Vacuum) مورد نیاز است. در هر دو حالت الکترون‌های ایجادشده را می‌توان به کمک میدان مغناطیسی (که مجموعه مورد استفاده عدسی مغناطیسی نامیده می‌شود) کانونی کرده و باریکه الکترونی مناسبی تولید کرد. شکل (‌۲) نمونه‌ای از عدسی مغناطیسی مورد استفاده را نشان می‌دهد.  

شکل (‌۲) نمونه‌ای از عدسی مغناطیسی

در اثر برخورد باریکه الکترونی با ماده پدیده‌های متنوعی روی می‌دهد (شکل ۳) که انواع پراکندگی‌ها (Scattering) را شامل می‌شود که مهمترین آنها عبارتند از:
● پراکندگی الاستیک بدون تغییر انرژی تکانه الکترون تغییر می‌کند.
● پراکندگی غیرالاستیک که الکترون بخشی از انرژی خود را از دست می‌دهد که شامل موارد زیر است:
● پراکندگی ناشی از تولید فوتون (کوانتای ارتعاشی شبکه)
● پراکندگی در اثر برخورد با بار آزاد سطحی در فلزات که پراکندگی پلاسمونی نامیده می‌شود.
● برانگیختگی الکترون والانس
● برانگیختگی الکترون‌های مدار داخلی ماده که در تولید اشعه X مشخصه ماده نقش دارد.
● جذب: در این حالت الکترون در برخوردهای پی در پی تمام انرژی خود را به ماده منتقل می‌کند.

شکل (۳) سازوکارهای موجود در برخورد باریکه الکترونی با ماده

در اثر برخورد باریکه الکترونی با ماده الکترون‌های ثانویه تولید می‌شوند. هرچند تفکیک الکترون‌های اولیه کم‌انرژی و الکترون‌های ثانویه عملا‌ً دشوار است. علاوه بر الکترون‌های ثانویه الکترون‌ها پس‌پراکنده‌شده نیز وجود دارند که برای تصویربرداری الکترونی روبشی از آنها استفاده می‌شود. الکترون‌ها در برخورد اولیه با ماده موجب برانگیختگی الکترون‌های ترازهای داخلی ماده می‌شوند. الکترون‌های برانگیخته‌شده به دو صورت به حالت پایه برمی‌گردند که عبارتند از:
تولید الکترون اوژه و تولید اشعه X که با اندازه‌گیری هرکدام از آنها می‌توان برخی از ویژگی‌های ماده را بدست آورد. در صورتی که تراز برانگیخته‌شده ‌تراز خارجی اتم باشد، الکترون با گسیل فوتون می‌تواند به حالت پایه برگردد. شکل (۴) شمایی از سازو کارهای موجود در برانگیختگی ترازهای انرژی در اثر برخورد الکترون را نشان می‌دهد.

. شکل (۴) شمایی از سازو کارهای موجود در برانگیختگی ترازهای انرژی در اثر برخورد الکترون

درابتدا باریکه الکترونی با انرژی بالا در یک تفنگ الکترون تولید می‌شود. باریکه تولیدشده را می‌توان به راحتی و به وسیله عدسی‌های مغناطیسی به مقدار مناسب کانونی کرد. بعد ازکانونی‌شدن باریکه الکترونی هم‌انرژی برای شروع آزمایش در دسترس است. باریکه الکترونی به نمونه مورد آزمایش که دارای ضخامت بسیار کمی است تابانده می‌شود و سازوکارهایی که پیشتر در مورد آنها صحبت شد، بسته به نوع ماده در ناحیه برخورد وجود خواهد داشت. همان‌گونه که در شکل به‌روشنی مشخص است آشکارسازهایی برای آشکارسازی و جمع‌آوری داده‌های مربوط به هریک از فرآیندهای موجود درنظر گرفته شده است.
شکل (۵) شمایی از اساس کار میکروسکوپ عبور الکترونی و قسمت‌های مختلف آن را نشان می‌دهد.

شکل ۵- اساس کار میکروسکوپ عبور الکترونی

در بیشتر میکروسکوپها EDS برای آشکارسازی اشعه X تولیدشده، EELS برای آشکارسازی تغییرات انرژی الکترون‌ها درنظر گرفته می شود. سایر آشکارسازها برای تصویربرداری از نمونه مورد استفاده قرار می‌گیرند. در این دستگاه‌ها امکان آشکارسازی تغییرات پراش در مقطع نمونه و تصویربرداری از منطقه‌های مورد نظر در نمونه نیز وجود دارد.
در حالت تصویربرداری الکترون عبوری روبشی (STEM) باریکه‌ای با قطر ْA20-2 سطح نمونه را جاروب می‌کند. همزمان با روبش سطح نمونه داده‌های مختلف ازجمله اشعه X، الکترون‌های ثانویه و الکترون‌های پس‌پراکنده‌شده جمع‌آوری می شوند. استفاده از حالت روبشی برای تحلیل شیمیایی نمونه نیز قابل استفاده است.

شکل۶- شمایی از قسمتهای مختلف و مسیر باریکه الکترونی در میکروسکوپ عبور الکترونی

حالت‌های مختلف تصویربرداری
تصویربرداری به وسیله میکروسکوپ عبور الکترونی در حالت‌های مختلف انجام می‌شود که مهم‌ترین آنها عبارتند از:
● تصویربرداری معمولی
● تصویربرداری میدان تاریک
● تصویربرداری میدان روشن
می‌باشند. در میکروسکوپ‌های عبور الکترونی وضوح بالا علاوه بر حالت‌های فوق از مدهای دیگری نیز برای تصویربرداری استفاده می‌‌شود.
مسیر پرتوها در تصویربرداری معمولی در شکل (۷) آورده شده است. همان‌گونه که مشاهده می‌شود، از تمام پرتوهای عبوری برای ایجاد تصویر استفاده شده است. در این حالت نمی‌توان تصویری با وضوح بالا از نمونه تهیه کرد.

شکل ۷- مسیر پرتوها در تصویربرداری معمولی

در حالت میدان روشن (Bright-Field) تنها از پرتوهای پراشیده‌نشده برای تهیه تصویر استفاده می‌شود. شکل (۸) پرتوهای مورد استفاده در تصویربرداری در حالت میدان
روشن را نشان می‌دهد.
در این حالت الکترون‌های پراشیده‌ در تولید تصویر دخالتی ندارند و درنهایت وضوح تصویر افزایش می‌یابد. شکل (۹) پرتوهای مورد استفاده در تصویربرداری میدان تاریک را نشان می‌دهد. در این حالت تنها بخشی از پرتوهای پراشیده شده از نمونه برای تصویربرداری مورد استفاده قرار می‌گیرند. در حالت تصویربرداری میدان تاریک اغلب از پرتوهای نشان‌داده شده در شکل (۹) استفاده می‌شود که برخی پرتوها در آن حذف می‌شوند. علاوه بر موارد فوق کنتراست‌های دیگری مانند کنتراست شیمیایی و فاز نیز استفاده کرد. با استفاده از روش‌های مختلف تصویربرداری علاوه بر شکل و اندازه ذرات می‌توان درمورد نابجایی‌ها و عیوب شبکه نیز داده‌هایی بدست آورد. در میکروسکوپ‌های TEM/STEM از روش بررسی هم‌زمان سیگنال‌ها سازوکارهای موجود برای تصویربرداری و انواع دیگر آنالیزهای ممکن استفاده می‌شود.‌‌‌‌‌

شکل۸- پرتوهای مورد استفاده در تصویربرداری در حالت میدان روشن

شکل۹- پرتوهای مورد استفاده در تصویربرداری میدان تاریک

روش‌های آماده‌سازی نمونه
آماده‌سازی نمونه برای میکروسکوپ عبور الکترونی یکی از مراحلی است که قبل از انجام آزمایش صورت می‌گیرد. با توجه به نوع ماده مورد آزمایش رو‌ش‌های مختلفی برای نمونه‌سازی وجود دارد که مهمترین آنها عبارتند از:
● روش ساده‌ نشاندن مقدار کم ماده از بستر حاوی ذرات
● پولیش الکتریکی شیمیایی و مکانیکی
● سایش اتمی
● استفاده از میکروسکوپ‌های یونی با پرتو کانونی شده (FIB)
● اولترا میکروتومی برش لایه ی نازک از ماده که برای نمونه‌های بیولوژیکی و بافت بیشتر مورد استفاده قرار می گیرد شکل(۱۰).

شکل۱۰- دستگاه اولترا میکروتومی برش لایه ی نازک از ماده که برای نمونه‌های بیولوژیکی

در هر یک از این موارد نگهدارنده خاصی مورد نیاز می‌باشد. در اغلب اوقات برای آنالیز ذرات و یا نانوساختارها از توری مسی پوشانده شده با لایه کربنی در حد نانومتر استفاده می‌کنند. در نهایت ضخامت نمونه تهیه شده باید کمتر از یک میکرومتر باشد. شکل (۱۱) نمونه‌هایی از توری مسی پوشانده شده با لایه کربنی را نشان می‌دهد

شکل۱۱- نمونه‌هایی از توری مسی پوشانده شده با لایه کربنی

پراش الکترونی
باریکه الکترونی در برخورد با نمونه بلوری پراشیده شده و نقش پراش حاوی نقاط روشنی یا دایره‌هایی هم‌مرکز دیده می‌شود که به ساختار بلوری نمونه بستگی دارد. شکل (۱۲) سازوکار ایجاد نقش پراش را نشان می‌دهد که ناشی از پراکنندگی الاستیک الکترون‌ها از اتم‌ها می‌باشد. در اثر پراش امواج الکترونی با یکدیگر تداخل کرده و در صورتی که شرط براگ:

که D ثابت شبکه بلور و زاویه براگ می‌باشد شکل (۱۲) برقرار باشد امواج الکترونی همدیگر را تقویت کرده و نقاط روشن نقش پراش ایجاد می‌شود. در صورتی که از نمونه‌های بس بلوری استفاده شود. نقش پراش های نقاط روشن به صورت دوایری هم‌مرکز دیده می‌شوند

شکل ۱۲- سازوکار ایجاد نقش پراش

با استفاده از نقش پراش و به کمک محاسبات و نرم‌افزارهای مناسب می‌توان ساختار نمونه را بدست آورد. برای بدست آوردن ساختار از نقش پراش الگوریتم‌هایی وجود دارد که می‌توان از مرجع [۱] استفاده کرد. شکل (۱۳) نقش پراش نمونه‌ایی از نقش پراش ساختار ده گوشی آلومینیم-نیکل-کبالت را نشان می‌دهد.

شکل ۱۳- نقش پراش نمونه‌ایی از نقش پراش ساختار ده گوشی آلومینیم-نیکل-کبالت

آنالیز EDS
همانگونه که در بخش‌های قبل اشاره شد در برخورد الکترون با ماده الکترون‌های تراز داخلی برانگیخته شده در فروافت به حالت پایه تولید فوتون اشعهx می‌نمایند. شکل (۱۴) شمایی از این سازوکار و خطوط طیفی را نشان می‌دهد. خطوط طیفی متعددی هستند که به سری‌های K و L و M معروف هستند.

شکل۱۴- شمایی از سازوکار و خطوط طیفی

در شکل(۱۵) تصویر میکروسکوپ عبور الکترونی

طول موج اشعه x تولید شده به جنس ماده بستگی دارد و می‌تواند معیار مناسبی برای آنالیز شیمیایی باشد. شدت اشعه x تولید شده با در نظر گرفتن احتمال رخ دادن سازوکار فوق می‌تواند آنالیز کمی‌تری را در دسترسی قرار دهد. آنالیز EDS را در SEM نیز می‌توان انجام داد ولی با توجه به ضخامت بالای نمونه درSEM پرتو الکترونی در قسمت وسیعی از ناحیه مورد نظر نفوذ کرده و مقدار متوسطی را بدست می‌دهد که برای آنالیز ساختارهای ریز مناسب نیست. برای آنالیز، پرتو x ایجاد شده شدت آن اندازه‌گیری می‌شود. در دستگاه‌های پیشرفته‌تر از آنالیز طول موج اشعه x (WDS) استفاده می‌کنند در این حالت با استفاده از بلور تنها به طول موج‌های مشخصی‌از اشعه x تولید شده اجازه عبور و آشکارسازی داده می‌شود. در شکل(۱۵) تصویر میکروسکوپ عبور الکترونی آورده شده است. مراجع.

۱٫ www.matter.org.uk
۲٫ B. Fultz and J.M. Howe, Transmission Electron Microscopy and Electron Diffraction of Materials, Springer, 2001

۱

منبع مقاله :

ترانسفورماتور Transformer

ترانسفورماتور (Transformer)

ترانسفورماتور (Transformer) وسیله‌ای است که انرژی الکتریکی را به وسیله دو یا چند سیم‌پیچ و از طریق القای الکتریکی از یک مدار به مداری دیگر منتقل می‌کند. به این صورت که جریان جاری در مدار اول (اولیه ترانسفورماتور) موجب به وجود آمدن یک میدان مغناطیسی در اطراف سیم‌پیچ اول می‌شود، این میدان مغناطیسی به نوبه خود موجب به وجود آمدن یک ولتاژ در مدار دوم می‌شود که با اضافه کردن یک بار به مدار دوم این ولتاژ می‌تواند به ایجاد یک جریان در ثانویه بینجامد.

ولتاژ القا شده در ثانویه VS و ولتاژ دو سر سیم‌پیچ اولیه VP دارای یک نسبت با یکدیگرند که به طور آرمانی برابر نسبت تعداد دور سیم پیچ ثانویه به سیم‌پیچ اولیه‌است:

 \frac{V_{S}}{V_{P}} = \frac{N_{S}}{N_{P}}

به این ترتیب با اختصاص دادن امکان تنظیم تعداد سیم‌پیچ‌های ترانسفورماتور، می‌توان امکان تغییر ولتاژ در ثانویه ترانس را فراهم کرد.

یکی از کاربردهای بسیار مهم ترانسفورماتورهای کاهش جریان پیش از خطوط انتقال انرژی الکتریکی است. دلیل استفاده از ترانسفورماتور در ابتدای خطوط این است که همه هادی‌های الکتریکی دارای میزان مشخصی مقاومت الکتریکی هستند، این مقاومت می‌تواند موجب اتلاف انرژی در طول مسیر انتقال انرژی الکتریکی شود. میزان تلفات در یک هادی با مجذور جریان عبوری از هادی رابطه مستقیم دارد و بنابر این با کاهش جریان می‌توان تلفات را به شدت کاهش داد. با افزایش ولتاژ در خطوط انتقال به همان نسبت جریان خطوط کاهش می‌یابد و به این ترتیب هزینه‌های انتقال انرژی نیز کاهش می‌یابد، البته با نزدیک شدن خطوط انتقال به مراکز مصرف برای بالا بردن ایمنی ولتاژ خطوط در چند مرحله و باز به وسیله ترانسفورماتورها کاهش می‌یابد تا به میزان استاندارد مصرف برسد. به این ترتیب بدون استفاده از ترانسفورماتورها امکان استفاده از منابع دوردست انرژی فراهم نمی‌آمد.

ترانسفورماتورها یکی از پربازده‌ترین تجهیزات الکتریکی هستند به طوری که در برخی ترانسفورماتورهای بزرگ بازده به ۹۹.۷۵٪ نیز می‌رسد. امروزه از ترانسفورماتورها در اندازه‌ها و توان‌های مختلفی استفاده می‌شود از یک ترانسفورماتور بند انگشتی که در یک میکروفن قرار دارد تا ترانسفورماتورهای غول‌پیکر چند گیگا ولت-آمپری. همه این ترانسفورماتورها اصول کار یکسانی دارند اما در طراحی و ساخت متفاوت هستند.

اصول پایه

به طور کلی یک ترانسفورماتور بر دو اصل استوار است:

  • اول اینکه، جریان الکتریکی متناوب می‌تواند یک میدان مغناطیسی متغییر پدید آورد (الکترومغناطیس)
  • و دوم اینکه، یک میدان مغناطیسی متغییر در داخل یک حلقه سیم‌پیچ می‌تواند موجب به وجود آمدن یک جریان الکتریکی متناوب در یک سیم سیم‌پیچ شود.

ساده‌ترین طراحی برای یک ترانسفورماتور در شکل ۲ آمده‌است. جریان جاری در سیم‌پیچ اولیه موجب به وجود آمدن یک میدان مغناطیسی می‌گردد. هر دو سیم‌پیچ اولیه و ثانویه بر روی یک هسته که دارای خاصیتنفوذپذیری مغناطیسی بالایی است (مانند آهن) پیچیده شده‌اند. بالا بودن نفوذپذیری هسته موجب می‌شود تا بیشتر میدان تولید شده توسط سیم‌پیچ اولیه از داخل هسته عبور کرده و به سیم‌پیچ ثانویه برسد.

قانون القا

میزان ولتاژ القا شده در سیم‌پیچ ثانویه را می‌توان به وسیله قانون فاراده به دست آورد:

 V_{S} = N_{S} \frac{d\Phi}{dt}

در فرمول بالا VS ولتاژ لحظه‌ای, NS تعداد دورهای سیم‌پیچ در ثانویه و Φ برابر مجموع شار مغناطیسی است که از یک دور از سیم‌پیچ می‌گذرد. با توجه به این فرمول تا زمانی که شار در حال تغییر از دو سیم پیچ اولیه و ثانویه عبور کند ولتاژ لحظه‌ای در اولیه یک ترانسفورماتور آرمانی از فرمول زیر بدست می‌آید:

 V_{P} = N_{P} \frac{d\Phi}{dt}

و با توجه به تعداد دور سیم‌پیچ‌های اولیه و ثانویه و این معادله ساده می‌توان میزان ولتاژ القایی در ثانویه را بدست آورد:

 \frac{V_{S}}{V_{P}} = \frac{N_{S}}{N_{P}}

شکل-۲ یک ترانسفورماتور کاهنده آرمانی و مسیر عبور شار در هسته

معادله ایده‌ال توان

اگر سیم‌پیچ ثانویه به یک بار متصل شده باشد جریان در سیم‌پیچ ثانویه جاری خواهد شد و به این ترتیب توان الکتریکی بین دو سیم‌پیچ منتقل می‌شود. به طور ایده‌آل ترانسفورماتور باید کاملاً بدون تلفات کار کند و تمام توانی که به ورودی وارد می‌شود به خروجی برسد وبه این ترتیب توان ورودی و خروجی باید برابر باشد و در این حالت داریم:

Pincoming = IPVP = Poutgoing = ISVS

و همچنین در حالت ایده‌آل خواهیم داشت:

 \frac{V_{S}}{V_{P}} = \frac{N_{S}}{N_{P}} = \frac{I_{P}}{I_{S}}

بنابر این اگر ولتاژ ثانویه از اولیه بزرگتر باشد جریان ثانویه باید به‌همان نسبت از جریان اولیه کوچکتر باشد. همانطور که در بالا اشاره شد در واقع بیشتر ترانسفورماتورها بازده بسیار بالایی دارند و به این ترتیب نتایج به دست آمده از این معادلات به مقادیر واقعی بسیار نزدیک خواهد بود.

مبحث فنی

تعاریف ساده شده بالا از بسیاری از مباحث پیچیده درباره ترانسفورماتورها گذشته‌است.

در یک ترانسفورماتور آرمانی، ترانسفورماتور دارای یک هسته بدون مقاومت مغناطیسی و دو سیم‌پیچ بدون مقاومت الکتریکی است. زمانی که ولتاژ به ورودی‌های اولیه ترانسفورماتور اعمال می‌شود برای به وجود آمدن شار در مدار مغناطیسی هسته، جریانی کوچکی در سیم‌پیچ اولیه جاری می‌شود. از آنجایی که در ترانسفورماتور ایده‌آل هسته فاقد مقاومت مغناطیسی است این جریان قابل چشم پوشی خواهد بود در حالی که در یک ترانسفورماتور واقعی این جریان بخشی از تلفات ترانسفورماتور را تشکیل خواهد داد.

شار پراکندگی

در یک ترانسفورماتور آرمانی شار مغناطیسی تولید توسط سیم‌پیچ اول به طور کامل توسط سیم‌پیچ دوم جذب می‌شود اما در واقع بخشی از شار مغناطیسی در فضای اطراف پراکنده می‌شود. به شاری که در حین انتقال از مسیر خود جدا می‌شود شار پراکندگی (leakage flux) می‌گویند. این شار پراکندگی موجب به وجود آمده اثر خود القا در سیم‌پیچ‌ها می‌شود و به این ترتیب موجب می‌شود که در هر سیکل، انرژی در سیم‌پیچ ذخیره شده و در نیمه پایانی سیکل آزاد شود. این اثر به طور مستقیم باعث ایجاد افت توان نخواهد شد اما به دلیل ایجاد اختلاف فاز موجب ایجاد مشکلاتی در تنظیم ولتاژ خواهد شد و به این ترتیب باعث خواهد شد تا ولتاژ ثانویه دقیقاً نسبت واقعی خود با ولتاژ اولیه حفظ نکند؛ این اثر به ویژه در بارهای بزرگ خود را نشان خواهد داد. به همین دلیل ترانسفورماتورهای توزیع طوری ساخته می‌شوند تا کمترین میزان تلفات پراکندگی را داشته باشند.

با این حال در برخی کاربردها، وجود تلفات پراکندگی بالا پسندیده‌است. در این ترانسفورماتورها با استفاده از روش‌هایی مانند ایجاد مسیرهای مغناطیسی طولانی، شکاف‌های هوایی یا مسیرهای فرعی مغناطیسی اقدام به افزایش شار پراکندگی می‌کنند. دلیل افزایش عمدی تلفات پراکندگی در این ترانسفورماتورها قابلیت بالای این نوع ترانسفورماتورها در تحمل اتصال کوتاه است. از این گونه ترانسفورماتورها برای تغذیه بارهای دارای مقاومت منفی مانند دستگاه‌های جوش (یا دیگر تجهیزات استفاده کننده از قوس الکتریکی)، لامپ‌های بخار جیوه و تابلوهای نئون یا ایجاد ایمنی در بارهایی که احتمال بروز اتصال کوتاه در آنها زیاد است استفاده می‌شود.

تاثیر بسامد

مشتق زمان در قانون فاراده نشان می‌دهد که شار در یک سیم‌پیچ، برابر انتگرال ولتاژ ورودی است. در یک ترانسفورماتور ایده‌آل افزایش شار در سیم‌پیچ به طور خطی در نظر گرفته می‌شود اما در عمل شار مغناطیسی با سرعت نسبتا زیاد افزایش پیدا می‌کند این افزایش تا جایی ادامه دارد که شار به نقطه اشباع مغناطیسی هسته می‌رسد. به خاطر افزایش ناگهانی جریان مغناطیس کننده در یک ترانسفورماتور واقعی، همه ترانسفورماتورها باید همیشه با جریان متناوب سینوسی (نه پالسی) تغذیه شوند.

معادله عمومی EMF برای ترانسفورماتورها[نیازمند منبع]

اگر شار مغناطیسی را سینوسی در نظر بگیریم رابطه بین ولتاژ E، بسامد منبع f، تعداد دور N، سطح مقطع هسته A و ماکزیمم چگالی مغناطیسی B از رابطه عمومی EMF و به صورت زیر به دست می‌آید:

 E={\frac {2 \pi f N a B} {\sqrt{2}}} \!=4.44 f N a B

برای یک ترانسفورماتور در چگالی مغناطیسی ثابت، EMF با افزایش بسامد افزایش می‌یابد که تاثیر آن را می‌توان از معادله عمومی EMF محاسبه کرد. بنابراین با استفاده از ترانسفورماتورها در بسامد بالاتر می‌توان بهره‌وری آنها را نسبت به وزن‌شان افزایش داد چراکه یک ترانسفورماتور با حجم هسته ثابت در بسامد بالاتر می‌تواند میزان توان بیشتری را بین سیم‌پیچ‌ها جابجا کند و تعداد دور سیم‌پیچ کمتری نیز برای ایجاد یک امپدانس ثابت نیاز خواهد بود. با این حال افزایش بسامد می‌تواند موجب به وجود آمدن تلفات مضایف مانند تلفات هسته و اثر سطحی در سیستم شود. در هواپیماها و برخی تجهیزات نظامی از بسامد ۴۰۰ هرتز استفاده می‌شود چراکه با این کار گذشته از افزایش برخی تلفات می‌توان حجم تجهیزات را کاهش داد.

به طور کلی استفاده از یک ترانسفورماتور در ولتاژ نامی ولی بسامد بیش از نامی موجب کاهش جریان مغناطیس کننده می‌شود و به این ترتیب در بسامدی کمتر از بسامد نامی جریان مغناطیس کننده می‌تواند در حد زیادی افزایش یابد. البته استفاده از ترانسفورماتورها در بسامدهای بیشتر یا کمتر از بسامد نامی باید قبل از اقدام، مورد ارزیابی قرار گیرد تا شرایط ایمن برای کار ترانس مثل سنجش ولتاژها، تلفات و استفاده از سیستم خنک‌کننده خاص بررسی شود. برای مثال ترانسفورماتورها باید به وسیله رله‌های کنترل محافظتی ولتاژ به ازای بسامد مجهز شوند تا در مقابل اضافه ولتاژهای ناشی از افزایش بسامد محافظت شوند.

تلفات انرژی

یک ترانسفورماتور ایده‌آل هیچ تلفاتی نخواهد داشت و در واقع بازدهی برابر ۱۰۰٪ دارد. با این حال ترانسفورماتورهای واقعی نیز جزو بهره‌ورترین تجهیزات الکتریکی محسوب می‌شود به طوری که نمونه‌های آزمایشی ترانسفورماتورهایی که با بهرگیری از ابر رسانا ساخته شده‌اند به بازدهی برابر ۹۹٫۸۵٪ دست یافته‌اند. به طور کلی ترانسفورماتورهای بزرگتر از بازده بالاتری برخوردارند و ترانسفورماتورهایی که برای مصارف توزیعی مورد استفاده قرار می‌گیرند از بازدهی در حدود ۹۵٪ برخوردارند در حالی که ترانسفورماتورهای کوچک مانند ترانسفورماتورهای موجود در اداپتورها بازدهی در حدود ۸۵٪ دارند. تلفات به وجود آمده در ترانسفورماتور با توجه به عوامل به وجود آورنده یا محل اتلاف انرژی به این صورت طبقه بندی می‌شوند:

مقاومت سیم‌پیچ‌ها

جریانی که در یک هادی جاری می‌شود با توجه به میزان مقاومت الکتریکی هادی می‌تواند موجب به وجود آمدن حرارت در محل عبور جریان شود. در بسامدهای بالاتر اثر سطحی و اثر مجاورت نیز می‌توانند تلفات مضایفی را در ترانسفورماتور به وجود آورند.

تلفات پسماند (هیسترزیس)

هر بار که جهت جریان الکتریکی به‌خاطر وجود بسامد عوض می‌شود با توجه به جنس هسته، مقدار کمی انرژی در هسته باقی می‌ماند. به این ترتیب برای یک هسته با جنس ثابت این نوع تلفات با میزان بسامد تناسب دارد و با افزایش بسامد تلفات پسماند هسته نیز افزایش می‌یابد.

جریان گردابی

شکل-۳ یک ترانسفورماتور ایده‌آل به عنوان المانی در مدار

مواد فرومغناطیس معمولاً هادی‌های الکتریکی خوبی نیز هستند و بنابراین هسته ترانسفورماتورمی‌تواند مانند یک مدار اتصال کوتاه شده عمل کند. بنابراین حتی با القای میزان کمی ولتاژ، جریان در هسته به شدت بالا می‌رود. این جریان جاری در هسته گذشته از به وجود آوردن تلفات الکتریکی موجب به وجود آمدن حرارت در هسته نیز می‌شود. جریان گردابی در هسته با مجذور بسامد منبع رابطه مستقیم و با مجذور ضخامت ورق هسته رابطه معکوس دارد. برای کاهش تلفات گردابی در هسته، هسته‌ها را ورقه ورقه کرده و آنها را نسبت به یکدیگر عایق می‌کنند.

تغییر شکل بر اثر مغناطیس

شار مغناطیسی در یک ماده فرومغناطیس موجب حرکت نسبی ورقه‌های هادی نسبت به یکدیگر می‌شود. در صورت محکم نبودن این ورقه‌ها این اثر می‌تواند موجب ایجاد صدایی شبیه وز وز در هنگام کار کردن ترانسفورماتور شود به این اثر تغییر شکل بر اثر میدان مغناطیسی یا Magnetostriction می‌گویند. این اثر می‌تواند موجب به وجود آمدن گرما در اثر اصطکاک بین صفحات نیز شود.

تلفات مکانیکی

به دلیل وجود تغییر شکل بر اثر مغناطیس در یک ترانسفورماتور بین قطعات ترانسفورماتور نوعی حرکت به وجود می‌آید این تحرک نیز به نوبه خود موجب به وجود آمدن تلفات مکانیکی در ترانسفورماتورخواهد شد. در صورتی که قطعات موجود در ترانسفورماتور به خوبی در جای خود محکم نشده باشند، تحرکات مکانیکی آنها نیز افزایش یافته و در نتیجه تلفات مکانیکی نیز افزایش خواهد یافت.

مدار معادل

شکل-۴ مدار معادل یک تراسنفورماتور

محدودیت‌های فیزیکی یک ترانسفورماتور واقعی به صورت یک مدار نمایش داده می‌شوند. این مدار معادل از تعدادی از عوامل به وجود آورنده تلفات یا محدودیت‌ها و یک ترانسفورماتور ایده‌آل تشکیل شده‌است. تلفات توان در سیم‌پیچ یک ترانسفورماتور به طور خطی تابعی از جریان هستند و به راحتی می‌تواند آنها را به صورت مقاومت‌هایی سری با سیم‌پیچ‌های ترانسفورماتور نمایش داده شود؛ این مقاومت‌ها RS و RP هستند. با بررسی خواص شار پراکندگی می‌توان آن را به صورت خود القاهای XP و XS نشان داد که به صورت سری با سیم‌پیچ ایده‌آل قرار می‌گیرند. تلفات آهنی از دو نوع تلفات گردابی (فوکو) و پسماند (هیسترزیس) تشکیل شده. در بسامد ثابت این تلفات با مجذور شار هسته نسبت مستقیم دارند و از آنجایی که شار هسته نیز تقریباً با ولتاژ ورودی نسبت مستقیم دارد این تلفات را می‌توان به صورت مقاومتی موازی با مدار ترانسفورماتور نشان داد. این مقاومت همان RC است.

هسته‌ایی با نفوذپذیری محدود نیازمند جریان IM خواهد بود تا همچنان شار مغناطیسی را در هسته برقرار کند. بنابراین تغییرات در جریان مغناطیس کننده با تغییرات در شار مغناطیسی هم فاز خواهد بود و به دلیل اشباع پذیر بودن هسته، رابطه بین این دو خطی نخواهد بود. با این حال برای ساده کردن این تاثیرات در بیشتر مدارهای معادل این رابطه خطی در نظر گرفته می‌شود. در منابع سینوسی شار مغناطیسی ۹۰ درجه از ولتاژ القایی عقبتر خواهد بود، بنابراین این اثر را می‌توان با القاگر XM در مدار نشان داد که به طور موازی با تلفات آهنی هسته RC قرار می‌گیرد. RC و XM را در برخی موارد با هم به صورت یک شاخه در نظر می‌گیرند و آن را شاخه مغناطیس کننده می‌نامند. اگر سیم‌پیچ ثانویه ترانسفورماتور را مدار باز کنیم تمامی جریان عبوری از اولیه ترانسفورماتور جریان I0 خواهد بود که از شاخه مغناطیس کننده عبور خواهد کرد این جریان را جریان بی‌باری نیز می‌نامند.

مقاومت‌های موجود در طرف ثانویه یعنی RS و XS نیز باید به طرف اولیه منتقل شوند. این مقاومت‌ها در واقع معادل تلفات مسی و پراکندگی در طرف ثانویه هستند و به صورت سری با سیم پیچ ثانویه قرار می‌گیرند.

مدار معادل حاصل را مدار معادل دقیق می‌نامند گرچه در این مدار معادل نیز از برخی ملاحضات پیچیده مانند اثرات غیرخطی چشم پوشی می‌کند.

انواع

ساخت انواع مختلف ترانسفورماتورها به منظور رفع اهداف استفاده از آنها در کاربردهای متفاوت می‌باشد. در این میان برخی از انواع ترانسفورماتورها بیشتر مورد استفاده قرار می‌گیرند که می‌توان به نمونه‌ها زیر اشاره کرد:

اتوترانسفورماتور

اتوترانسفورماتور به ترانسفورماتوری گفته می‌شود که تنها از یک سیم‌پیچ تشکیل شده‌است. این سیم‌پیچ دارای دو سر ورودی و خروجی و یک سر در میان است. به طوری که می‌توان گفت سیم‌پیچ کوتاه‌تر(که در ترنس کاهنده سیم‌پیچ ثانویه محسوب می‌شود) قسمتی از سیم‌پیچ بلندتر است. در این گونه ترانسفورماتورها تا زمانی که نسبت ولتاژ-دور در دو سیم‌پیچ برابر باشد ولتاژ خروجی از نسبت سیم‌پیچ تعداد دور سیم‌پیچ‌ها به ولتاژ ورودی به دست می‌آید.

با قرار دادن یک تیغه لغزان به جای سر وسط ترانس، می‌توان نسبت سیم‌پیچ‌های اولیه و ثانویه را تا حدودی تغییر داد و به این ترتیب ولتاژ پایانه خروجی ترانسفورماتور را تغییر داد. مزیت استفاده از اتوترانسفورماتور کم هزینه تر بودن آن است چراکه به جای استفاده از دو سیم‌پیچ تنها از یک سیم‌پیچ در آنها استفاده می‌شود.

ترانسفورماتور چند فازه

برای تغذیه بارهای سه فاز می‌توان از سه ترانسفورماتور جداگانه استفاده کرد یا آنکه از یک ترانسفورماتور سه فاز استفاده کرد. در یک ترانسفورماتور سه فاز مدارهای مغناطیسی با هم مرتبط هستند و بنابر این هسته دارای شار مغناطیسی در سه فاز متفاوت است. برای چنین هسته‌هایی می‌توان از چندین شکل مختلف برای هسته استفاده کرد که این شکل‌های مختلف هر یک دارای مزایا و معایبی هستند و در مواردی خاص کاربرد دارند.

طبقه‌بندی

به دلیل وجود کاربردهای متفاوت برای ترانسفورماتورها، آنها ار بر حسب پارامترهای متفاوتی طبقه‌بندی می‌کنند:

  • بر حسب رده توان: از کسری از ولت-آمپر تا بیش از هزار مگا ولت-آمپر.
  • بر حسب محدوده بسامد: بسامد قدرت، بسامد صوتی، بسامد رادئویی
  • بر حسب رده ولتاژ: از چند ولت تا چند صد کیلوولت
  • بر حسب نوع خنک کنندگی: خنک کننده هوا، روغنی، خنک کنندگی با فن، خنک کنندگی آب.
  • بر حسب نوع کاربرد: منبع تغذیه، تطبیق امپدانس، تثبیت کننده ولتاز و جریان خروجی یا ایزوله کردن مدار.
  • برحسب هدف نهایی کاربرد: توزیع، یکسوسازی، ایجاد قوس الکتریکی، ایجاد تقویت کننده.
  • بر حسب نسبت سیم‌پیچ‌ها: افزاینده، کاهنده، ایزوله کننده (با نسبت تقریبا یکسان در دوسیم‌پیچ)، متغیر.

ساختمان

هسته

هسته لایه لایه شده

لایه لایه کردن هسته ترانس جریان گردابی را به شدت کاهش می‌دهد.

ترانسفورماتورها مورد استفاده در کاربردهای قدرت یا بسامد بالا (رادیویی) معمولاً از هسته با جنس فولاد سیلیکاتی با قابلیت نفوذپذیری مغناطیسی بالا استفاده می‌کنند. قابلیت نفوذپذیری مغناطیسی در فولاد بارها بیشتر از نفوذپذیری در خلاء است و به این ترتیب با استفاده از هسته‌های فولادی جریان مغناطیس کننده مورد نیاز برای هسته به شدت کاهش می‌یابد و شار در مسیری کاملا نزدیک به سیم‌پیچ‌ها محبوس می‌شود. سازندگان ترانسفورماتورهای اولیه به سرعت متوجه این موضوع شدند که استفاده از هسته یک پارچه باعث افزایش تلفات گردابی در هسته ترانسفورماتور می‌شود و در طراحی‌های خود از هسته‌هایی استفاده کردند که از دسته‌های عایق شده آهن تولید شده بود. در طراحی‌هایی بعدی با استفاده از ورق‌های نازک آهن که نسبت به یکدیگر عایق شده بودند، تلفات در ترانسفورماتور باز هم کاهش یافت. از این روش در ساخت هسته امروزه نیز استفاده می‌شود. همچنین با استفاده از معادله عمومی ترانسفورماتور می‌توان نتیجه گرفت که کمترین سطح اشباع در هسته با سطح مقطع کوچکتر ایجاد می‌شود.

گرچه استفاده از هسته‌های با لایه‌های نازک‌تر تلفات را کاهش می‌دهد، اما از طرفی هزینه ساخت ترانسفورماتور را افزایش می‌دهد. بنابراین از هسته‌های با لایه‌های نازک معمولاً در بسامدهای بالا استفاده می‌شود. با استفاده از برخی انواع هسته‌های با لایه‌های بسیار نازک امکان ساخت ترانسفورماتورهایی برای کاربرد در مصارف تا ۱۰ کیلوهرتز پدید می‌آید.

نوعی متداول از هسته‌های لایه لایه، از قطعاتی E شکل که با قطعاتی I شکل یک هسته را به وجود می‌آورند تشکیل شده. این هسته‌ها را هسته‌های E-I می‌نامند. این هسته‌ها گرچه تلفات را افزایش می‌دهند اما به علت آسانی مونتاژ، هزینه ساخت هسته را کاهش می‌دهند. نوع دیگری از هسته‌ها، هسته‌های C شکل هستند. این هسته از قرار دادن دو قطعه C شکل در مقابل یکدیگر تشکیل می‌شود. این هسته‌ها این مزیت را دارند که تمایل شار برای عبور از هر قطعه از هسته برابر است و این مزیت باعث کاهش یافتن مقاومت مغناطیسی می‌شود.

پسماند در یک هسته فولادی به معنای باقی ماندن خاصیت مغناطیسی در هسته پس از قطع شدن توان الکتریکی است. زمانی که جریان دوباره در هسته جاری می‌شود این پسماند باقی مانده در هسته تا زمانی که کاهش یابد موجب به وجود آمدن یک جریان هجومی در ترانس می‌شود. تجهیزات حفاظتی مانند فیوزها باید طوری انتخاب شوند که به این جریان هجومی اجازه عبور دهند.

ترانسفورماتورهای توزیع می‌توانند با استفاده از هسته‌های با قابلیت نفوذ پذیری مغناطیسی بالا تلفات بی باری را کاهش دهند. هزینه اولیه هسته بعدها با صرفه‌جویی که در مصرف انرژی و افزایش طول عمر ترانس می‌شود جبران خواهد شد.

هسته‌های یکپارچه

هسته‌هایی که از آهن پودر شده ساخته شدند در مدارهایی که با بسامد بالاتر از بسامد شبکه تا چند ده کیلوهرتز کار می‌کنند کاربرد دارند. این هسته دارای قابلیت نفوذ پذیری مغناطیسی بالا و همچنین مقاومت الکتریکی بالا هستند. برای بسامدهایی بالاتر از باند VHF از هسته‌های غیر رسانای فریت استفاده می‌شود. برخی از ترانسفورماتورهای بسامد رادیویی از هسته‌های متحرک استفاده می‌کنند که این امکان را به وجود می‌آورد که ضریب اتصال هسته قابل تغییر باشد.

هسته‌های حلقوی

ترانسفورماتور هسته حلقوی کوچک

ترانسفورماتورهای حلقوی دور حلقه‌ای ساخته می‌شوند.جنس این هسته بسته به بسامد مورد استفاده ممکن است از نوارهای بلند فولاد سیلیکاتی، پرمالوی پیچیده شده دور یک چنبره، آهن تقویت شده یا فریت باشد.ساختار نواری باعث چینش بهینه مرز_دانه‌ها می‌شود که این امر با کاهش رلوکتانس هسته موجب افزایش بهره وری ترنسفورماتور می‌گردد.شکل حلقوی بسته باعث از بین رفتن فاصله هوایی در هسته‌هایی با ساختار E-I می‌شود.سطح مقطع حلقه عموما به صورت مربعی یا مستطیلی می‌باشند، البته هسته‌هایی با سطح مقطع دایروی با قیمت بالا نیز وجود دارند. سیم پیچیهای اولیه و ثانویه به صورت فشرده پیچیده می‌شوند و تمام سطح حلقه را می‌پوشانند. با این کار می‌توان طول سیم مورد نیاز را به حداقل رساند. در توانهای برابر ترانسفورماتورهای حلقوی از انواع E-I -که ارزانتر میباشند- بازده بیشتری دارند.دیگر مزایای ترانسفورماتورهای حلقوی به قرار زیرند:اندازه کوچکتر (در حدود نصف)، وزن کمتر(در حدود نصف)، اغتشاش (صدای هوم) پائین(ایده آل برای استفاده در تقویت کننده‌های صوتی)، میدان مغناطیسی کمتر(در حدود یک دهم)، تلفات بی باری پائین(مناسب برای مدارها در حالت آماده بکار-standby-). از معایب آنها به قیمت بیشتر و توان نامی محدود می‌توان اشاره کرد. در بسامدهای بالا هسته‌های حلقوی فریت مورد استفاده قرار می‌گیرند. فریت قابلیت کار در بسامدهای چند ده کیلوهرتز تا یک مگا هرتز را دارا میباشد. با بکارگیری فریت تلفات، اندازه فیزیکی، و وزن منابع نیروی سوئیچ مد کاهش می‌یابد. ایراد دیگر ترانسفورماتورهای حلقوی هزینه بالای سیم پیچی در آنهاست. در نتیجه آنها در توان‌های نامی بیشتر از چند کیلوولت آمپر کاربرد بسیار کمی دارند.

باتری

باتری

باتری یا پیل الکتریکی (ولتائیک) چشمه‌ای از انرژی پتانسیل الکتریکی است که سایر انرژی‌ها مانند انرژی شیمیایی، نور و یا … را به انرژی الکتریکی تبدیل می‌کند و این انرژی در قطب‌های باتری قابل دریافت است. انرژی قابل دریافت در قطب‌های باتری به ازای واحد بار الکتریکی را نیروی محرکه الکتریکی (Electromotive force یا emf) باتری می‌گویند و آن را با یکای ولت اندازه گیری می‌کنند. قطب مثبت باتری آند و قطب منفی آن کاتد نام دارد.

ساختمان باتری

هر باتری یک مقاومت داخلی (r) دارد. اختلاف پتانسیل بین قطب‌های باتری (v)، زمانی که جریان I از آن می‌گذرد، برابر V=Eemf – Ir می‌باشد. فرایند تبدیل انرژی در باتری با گذشت زمان افزایش مقاومت الکتریکی داخلی یا کاهش انرژی پتانسیل اولیه همراه است. مقدار مقاومت داخلی به نوع باتری و طرز ساختش وابسته‌است.

شارژ باتری

در باتری فرسوده نوعی مقاومت داخلی به قدری زیاد است که با عبور جریان، ولتاژ دو سر باتری به سرعت افت می‌کند و باتری قابلیت تامین انرژی الکتریکی مفید را ندارد. در برخی باتری‌ها با گذراندن جریانی در جهت مخالف جریان، به هنگامی که باتری کار عادی‌اش را انجام می‌دهد، می‌توان باتری را دوباره باردار یا شارژ کرد. در فرایند شارژ باتری انرژی پتانسیل در آن ذخیره می‌شود البته تعداد دفعات شارژ باتری به خاطر برگشت ناپذیری فرایندهای تبدیل انرژی، محدود است.

فرایندهای تبدیل انرژی در باتری

در باتری خشک معمولی، بر اثر واکنش ماده آند (قطب مثبت) و ماده کاتد (قطب منفی) با الکترولیتی که محیط بین آند و کاتد را تشکیل می‌دهد، انرژی شیمیایی به انرژی الکتریکی تبدیل می‌شود. در باتری خورشیدی، انرژی الکترومغناطیسی نور تابیده شده به سلول‌های خورشیدی، با جداسازی‌های مثبت و منفی درون باتری، به شکل انرژی الکتریکی در می‌آید.

توان الکتریکی باتری

توانی که هر باتری بر حسب وات تامین می‌کند، برابر حاصل‌ضرب نیروی محرکه الکتریکی (بر حسب ولت) در شدت جریان الکتریکی باتری I (برحسب آمپر) می‌باشد. در کاربردهایی با توان زیاد از جمله استارت زنی اتومبیل موتور اتومبیل، میزان توان‌های تامین شده در فواصل زمانی کوتاه به بیش از ۱۰۰۰ وات می‌رسد. در کاربرد کم توان در وسایل الکترونیکی ظریف، مانندسمعک‌ها و ساعت‌های کامپیوتری، میزان توان‌های تامین شده در حدود چند میلی وات است.

خطرات و نقایص باتری

خطرات و نقایص مربوط به باتری عبارتند از:

  • انفجار
  • نشتی
  • ملاحظات زیست محیطی

انفجار

پدیده انفجار باتری عموماً ناشی از عدم کاربرد یا کارکرد صحیح باتری است. به عنوان مثال تلاش برای شارژ نمودن مجدد باتری‌های یک بار مصرف یا غیر قابل شارژ، اتصال کوتاه نمودن دو قطب مثبت و منفی باطری می تواند باعث انفجار این منبع انرژی الکتریکی شود.

نشتی

در بعضی از باتری‌ها از مقوا، فلز روی و مواد شیمیایی استفاده می شود. واکنش شیمیایی درون باتری در مدت زمان طولانی، باعث خروج و نشت مواد شیمیایی داخل باتری به بیرون شده و ایجاد خوردگی شیمیایی در قطعات فلزی دستگاه‌ها که اطراف باتری قرار دارند می نماید.

ملاحظات زیست محیطی

افزایش استفاده از باتری‌ها و کاربردهای وسیع آن باعث افزایش زباله‌های صنعتی و مشکلات زیست محیطی جدید این محصول شده است. تولید کنندگان باتری از مواد شیمیایی خطر ناک برای ایجاد کارایی بهتر باتری‌های تولیدی خود استفاده می کنند. زباله‌های باطری باعث بالا رفتن آلودگی محیط زیست به سموم مهلک فلزی باتری‌ها شده است .

باتری‌های امروزی

امروزه باتری‌هایی می‌توان ساخت که به طور متوسط در کاربردها پنج سال عمر مفید دارند. باتری‌ها در بهره گیری از وسایل الکترونیکی نقش مهمی ایفا می‌کنند. البته با بهبود بخشیدن تکنولوژی باتری‌ها منابع انرژی قابل حملی برای هر معرفی، از دستگاه‌های استریوی دستی تا اتومبیل‌های برقی، در اختیار داشته باشیم.

انواع باتری‌های امروزی عبارت است از:

۱- باتری‌های نیروگاهی (GROE-OGI-OPZS-FNC)

۲- باتری‌های آنتن‌های مخابراتی باتری‌های مخابراتی NET Power-power

۳-باتری‌های مورد استفاده در سامانه‌های ریلی و مترو

۴-باتری‌های مورد استفاده در پروژه‌های نفت، گاز و پتروشیمی (FNC)

۵-باتری‌های خورشیدی (Solar.bloc)

۶-باتری‌های مورد استفاده در ups

۷- باتری‌های منابع تغذیه (SLA – VRLA)

۸-باتری‌های اتومبیل، لیفتراک و موتورسیکلت

۹-باتری‌های سامانه‌های حفاظتی، روشنایی، امنیتی و سامانه‌های کنترل ۱۰- باتری روی – هوا

باتری تیسفون (باتری بغداد)

در سال ۱۳۳۰ خورشیدی، باستان شناس آلمانی ویلهلم کونیک و همکارانش ابزارهایی را در نزدیکی تیسفون پایتخت ایران در دوران اشکانیان یافتند. پس از بررسی معلوم شد که این ابزارها پیل‌های الکتریکی هستند که در دوره تاریخی ایران اشکانی ساخته شده و به کار برده می‌شده‌اند. او این پیل‌های تیسفون را Baghdad Battery نامید که امروزه با نامهای دیگر همچون باتری پارتیان و یا پیل اشکانی هم مشهورند.

این اکتشاف مربوط به دوره تاریخی سلسله اشکانیان، تاحدی موجب شگفتی است. حتی برخی از دانشمندان اروپایی و امریکایی این باتری را به موجودات فضایی افسانه ای و احتمالاً ساکنان فراهوشمند سیارات دیگر که تصور می شود با بشقاب‌های پرنده و کشتی‌های فضایی به زمین آمده‌ بودند، نسبت دادند، و آن را فراتر از دانش اندیشمندان و پژوهشگران آن دوران دانستند. برای ایشان پذیرفتنی نبود که دانش بشری در ۱۵۰۰ سال پیش از گالوای ایتالیایی(۱۷۸۶ میلادی) پیل الکتریکی را اختراع نموده باشند.

به احتمال زیاد، ساکنان بین النهرین از این پیل‌های الکتریکی جریان برق تولید می‌کردند و از آن برای آبکاری اشیا زینتی سود می‌جستند. اما در پهنه دریانوردی منطقه خاورمیانه از این اختراع جهت آبکاری ابزارهای آهنی در کشتی و جلوگیری از زنگ زدن و تخریب آنها استفاده می‌کردند.

منابع

  1.  Energizer.com – Learning Center – Energizer and the Environment. Retrieved 17 December 2007.
  2.  Battery dont’s – Global-Batteries. Retrieved 20 August 2007.
  3.  Batteries – Product Stewardship. EPA. Retrieved 11 September 2007.
  4. ۴٫۰ ۴٫۱ ۴٫۲ ماهنامه پیام دریا، ماهنامه اطلاعات علمی، مقاله اختراعات ایرانیان در پهنه دریانوردی و نجوم (جعفر سپهری)
  5. http://fa.wikipedia.org/wiki/باتری

بار الکتریکی

بار الکتریکی

بار الکتریکی یک خاصیت فیزیکی ماده است که باعث می‌شود، هنگامی که ماده در مجاورت مادهٔ باردار دیگری قرار می‌گیرد به آن نیرو وارد شود. بار الکتریکی دو نوع است بار مثبت و بار منفی. بین دو ماده یا جسم با بارهای هم‌نام نیروی رانش ایجاد می‌شود و برعکس اگر ناهم‌نام باشند بین آن‌ها ربایش ایجاد می‌شود. در سامانهٔ استاندارد بین المللی یکاها واحد بار الکتریکی کولن (C) است. البته در مهندسی برق از یکای آمپرمتر (Ah) نیز استفاده می‌کنند. در مطالعهٔ اندرکنش میان اجسام باردار، دانشالکترومغناطیس کلاسیک کافی است و از اثرهای کوانتومی صرف نظر می‌شود.

بار الکتریکی یک خاصیت پایسته در ماده است به این معنی که بار الکتریکی تولید نمی‌شود یا از بین نمی‌رود؛ بار الکتریکی از ذرات زیراتمی ماده که تعیین‌کنندهٔ خواصالکترومغناطیس ماده‌اند ناشی می‌شود. یک مادهٔ باردار الکتریکی، تولید‌کنندهٔ میدان‌های الکترومغناطیسی است و خود از آنها تاثیر می‌گیرد. اندرکنش میان یک بار متحرک و یکمیدان الکترومغناطیسی عامل ایجاد نیروهای الکترومغناطیسی است. این نیرو خود یکی از چهار نیروی بنیادی است.

آزمایش‌ها در قرن بیستم، توضیحی کوانتومی از بار الکتریکی ارائه کرده‌اند (این عمل را کوانتومی کردن می نامند)، به عبارت دیگر دانشمندان دریافته‌اند که بار الکتریکی خود از واحد کوچک‌تری با نام بار بنیادی تشکیل شده‌است. بار یک الکترون تقریبا برابر با e=1.602\times10^{-19} C می‌باشد. (البته ذراتی با نام کوارک وجود دارند که باری به اندازه چند e⅓ دارند.) پروتون باری به اندازهٔ e و الکترون باری برابر با e- دارد. علم مطالعه ذرات باردار و توضیح ارتباط آنها با فوتون‌ها، الکترودینامیک کوانتومی نام دارد.

مقدمه

میدان الکتریکی ایجاد شده توسط بار مثبت

میدان الکتریکی ایجاد شده توسط بار منفی

بار یک ویژگی بنیادی در انواع ماده است که به صورت ربایش یا رانش الکتروستاتیکی در حضور ماده‌ای دیگر نمود پیدا می‌کند. بار الکتریکی ویژگیی است که سرچشمهٔ آن به بسیاری از ذرات زیراتمی ماده برمی‌گردد. بارِ ذراتی که به صورت آزاد یافت می‌شوند به اندازهٔ ضریب صحیحی از بار بنیادی (بار یک الکترون) است، در این حالت می‌گوییم بار الکتریکی یک کمیت گسسته است. مایکل فاراده در آزمایش‌های برق‌کافت خود دریافت که بار الکتریکی کمیتی گسسته است. رابرت میلیکان نیز در آزمایش‌های خود به این حقیقت می‌رسد و مقدار بار یک الکترون را نیز اندازه می‌گیرد.

بنابراین به صورت کمیت‌های گسسته می‌گوییم که بار یک الکترون ۱- و بار یک پروتون ۱+ است. ذرات بارداری که بار آن‌ها هم‌نام باشد یکدیگر را می‌رانند و ذراتی که بارهای ناهم‌نام دارند یک دیگر را می‌ربایند. قانون کولمب مقدار عددی نیروی الکتروستاتیک بین دو ذرهٔ باردار را بدست می‌آورد و بیان می‌دارد که مقدار این نیرو با اندازهٔ بار ذرات رابطهٔ مستقیم و با مربع فاصلهٔ بین دو ذره رابطهٔ وارون دارد.

مقدار بار یک پادذره دقیقا برابر با بار ذرهٔ متناظر با آن است ولی به صورت ناهم‌نام. کوارک‌ها هم باری برابر با ۱۳– یا ۲۳+ بار بنیادی دارند که البته هیچ کوارکی تاکنون به صورت آزاد یافت نشده است (دلیل نظری این مطلب در بحث آزادی مجانبی یافت می‌شود).

بار الکتریکی یک جسم برابر با مجموع بارهای الکتریکی ذرات سازندهٔ آن است. این بار به طور معمول کوچک است چون ماده از اتم‌ ساخته شده و اتم‌ها به تعداد مساوی از پروتون و الکترون در هستهٔ خود دارند، در نتیجه از نظر الکتریکی خنثی اند. یک یون، اتمی (یا دسته‌ای از اتم‌ها) است که یک یا چند الکترون ازدست داده‌است یا به‌دست آورده‌است. اتمی که الکترون از دست دهد بار خالص آن مثبت می‌شود که آن را کاتیون می‌نامیم و اتمی که الکترون بدست آورد بار خالص آن منفی می‌شود و آن را آنیون می‌نامیم.

در هنگام تشکیل یک جسم (ماکروسکوپیک) اتم‌ها و یون‌های تشکیل دهندهٔ آن‌ به گونه‌ای با هم ترکیب می‌شوند که جسم از نظر الکتریکی خنثی باشد و یا اینکه همیشه تمایل به ازدست دادن یا گرفتن الکترون و درنتیجه خنثی بودن دارند اما به‌ندرت جسمی پیدا می‌شود که به طور خالص بی‌بار (خنثی) باشد.

گاهی یون‌ها در سراسر مادهٔ تشکیل دهندهٔ جسم پخش شده‌است و به آن جسم‌ بار مثبت یا منفی داده است. هم‌چنین اجسام رسانای جریان الکتریسیته گاهی سخت‌تر یا راحت‌تر (بسته به نوع ماده) الکترون بدست می‌آورند یا از دست می‌دهند و بار خالص مثبت یا منفی پیدا می‌کنند. به این پدیده که جسمی دارای بار غیر صفر ساکن باشدالکتریسیتهٔ ساکن می‌گوییم. به راحتی با بر روی هم مالیدن دو مادهٔ ناهمسان، مانند کهربا روی یک پارچه خزدار یا شیشه روی ابریشم می‌توانیم الکتریسیتهٔ ساکن تولید کنیم. با این روش اجسام نارسانا می‌توانند مقدار قابل توجهی بار الکتریکی بدست آورند یا ازدست دهند. واضح است که وقتی یکی از این اجسام بار الکتریکی بدست می‌آورد دیگری دقیقا به همان اندازه بار الکتریکی از دست می‌دهد و این به دلیل قانون پایستگی بار الکتریکی است که همواره برقرار است.

گاهی مجموع بارهای الکتریکی یک جسم صفر است اما بار آن به صورت غیریکنواخت پخش شده است (مثلا به دلیل حضور یک میدان الکترومغناطیسی یا دوقطبی‌های موجود در ماده) در این حالت می‌گوییم جسمقطبی شده‌است. بار الکتریکی بدست آمده از قطبی‌شدن ماده را بار مرزی، بار تولید شده بر روی یک جسم که ناشی از بار گرفته‌شده یا داده‌شده به جسمی دیگر است را بار آزاد و حرکت الکترون‌ها را در یک جهت خاص در فلزات رسانا، جریان الکتریکی می‌نامیم.

یکاها

در سامانهٔ بین‌المللی یکاها واحد بار الکتریکی کولمب معادل ۱۰۱۸×۶/۲۴۲ برابر بار یک پروتون می‌باشد. بنابراین بار یک الکترون e=1.602\times10^{-19} کولمب است. کولمب تعریف می‌شود به: مقدار باری که از مقطع عرضی یک رسانای الکتریکی با شدت جریان یک آمپر در یک ثانیه عبور می‌کند. برای نشان دادن بار یا الکتریسیته از علامت Q استفاده می‌کنند. مقدار بار الکتریکی به طور مستقیم توسط یک برق نما یا به طور غیر مستقیم توسط گالوانومتر اندازه گیری می‌شود.

بعد از فهم مکانیک کوانتوم و توضیح مفهوم کلاسیک بار الکتریکی با ادبیات کوانتومی، جورج استونی در سال ۱۸۹۱ واحد الکترون را برای بار الکتریکی پیشنهاد کرد، این پیشنهاد قبل از کشفیات جوزف جان تامسوندر سال ۱۸۹۷ بود. امروزه واحد بار به شکل بار اولیه یا واحد بنیادین بار یا eنشان داده می‌شود. اندازه‌گیری بار باید به شکل ضریبی از بار بنیادی باشد حتی اگر مقدار بار برای یک جسم در ابعاد بزرگ باشد، همچنین مقدار بار یک عدد حقیقی است.

پیشینه

دستگاه تعادل پیچشی کولمب

تالس، فیلسوف یونانی سده ششم پیش از میلاد گفته است که با مالیدن پارچه خزدار روی مواد مختلف مانند کهربا می‌توان بار یا الکتریسیته تولید کرد، همچنین یونانی‌ها گفته بودند که دکمه های باردار کهربایی می‌توانند اجسام سبک مانند مو را به سمت خود بربایند و یا اگر کهربا را برای مدت طولانی مالش دهند ممکن است جرقه تولید شود. در سال ۱۶۰۰ دانشمند انگلیسی، ویلیام گیلبرت بازگشتی به بحث الکتریسیته داشت و واژه لاتین الکتریکوس گرفته شده از واژه یونانی ηλεκτρον به معنی کهربا را ایجاد کرد که البته خیلی زود این واژه به شکل انگلیسی electric و electricity تغییر پیدا کرد. در سال ۱۶۶۰ اتوفون گوریک تلاش‌های گیلبرت را دنبال کرد و احتمالا او کسی است که دستگاه تولیدکننده الکتریسیته ساکن را اختراع کرده است. از دیگر اروپاییان پیشرو در این زمینه می‌توان از رابرت بویل نام برد. بویل کسی است که در سال ۱۶۶۷ اظهار داشت که ربایش و رانش الکتریکی در فضای خالی نیز امکان‌پذیر است. استفان گری در سال ۱۷۲۹ مواد را به گروه‌های رسانا و نارسانا دسته‌بندی کرد.چارلز فرانسوا دو فی در سال ۱۷۳۳ گفت که: الکتریسیته از دو راه مختلف می‌آید که می‌توانند یکدیگر را خنثی کنند او این اظهارات را با عنوان تئوری “دو سیال” مطرح کرد که: وقتی شیشه روی ابریشم مالیده می‌شود شیشه باردار می‌شود یا بار شیشه‌ای و وقتی کهربا روی خز مالیده می‌شود کهربا باردار می‌شود یا بار صمغی. در سال ۱۸۳۹ مایکل فاراده نشان داد که تقسیم‌بندی ظاهری بین الکتریسیته ساکن، الکتریسیته جاری و بیوالکتریسیته درست نیست و همه این‌ها ناشی از رفتار الکتریکی قطب‌های مختلف دوقطبی‌ها است که به طور دلخواه یک را مثبت و دیگری را منفی نامیده‌ایم. بار مثبت، همان بار باقی مانده روی میله شیشه‌ای پس از مالش با ابریشم است.
بنجامین فرانکلین در قرن ۱۸ بیشترین تجربه را در این زمینه دارد. وی به حمایت از تئوری تک سیال الکتریکی بحث کرد. او تصور می‌کرد که بارالکتریکی یک سیال نامرئی است که در تمام مواد وجود دارد. مثلا او معتقد بود که شیشه است که در ظرف لیدن بار الکتریکی را انباشته می‌کند. او اثبات کرد که مالیدن دو سطح نارسانا روی هم باعث می‌شود که این سیال تغییر مکان دهد و همین‌طور جاری شدن این سیال جریان الکتریکی را ایجاد می‌کند. وی این را نیز اثبات کرد که اگر ماده مقدار کمی از این سیال را داشته باشد می‌گوییم بار منفی دارد و اگر مقدار اضافی از آن را داشته باشد می‌گوییم بار مثبت دارد. به طور دلخواه (یا به دلیلی که ثبت نشده است) وی انتخاب کرد که باری که روی شیشه انباشته شده، بار شیشه‌ای بار مثبت است و بار صمغی منفی است. همچنین او بود که واژه‌های بار و باتری را وارد فرهنگ الکتریسیته کرد.ویلیام واتسون نیز هم‌زمان با فرانکلین به همین نتایج رسید.

الکتریسیته ساکن و الکتریسیته جاری

الکتریسیته ساکن و جاری دو پدیده جداگانه‌اند، که هر دو در اثر بار الکتریکی‌اند و می‌توانند همزمان در یک جسم اتفاق افتند. الکتریسیته ساکن منبعی برای بار الکتریکی جسم است و اگر دو جسم که در تعادل الکتریکی نباشند به هم بچسبانیم تخلیه الکتریکی بین آنها اتفاق می‌افتد. تخلیه الکتریکی در بار الکتریکی هر دو جسم تغییر ایجاد می‌کند، در مقابل الکتریسیته جاری، جریان یافتن بارهای الکتریکی در یک جسم است که موجب ازدست‌دادن یا گرفتن هیچ‌گونه باری در آن جسم نمی‌شود. البته در تخلیه الکتریکی هم بارها از یکی به سمت دیگری جاری می‌شود اما این جریان خیلی کوتاه است که بخواهیم آن را جریان الکتریکی بخوانیم.

باردار کردن از راه تماس

یک آزمایس ساده

یک میله شیشه‌ای و صمغ را در نظر بگیرید، هیچ کدام از آنها خواص الکتریکی از خود نشان نمی‌دهند؛ آنها را باهم مالش دهید و همچنان در تماس با هم قرار دهید، همچنان هیچ اثر الکتریکی از خود نشان نمی‌دهند؛ حال آنها را از هم جدا کنید حالا یکدیگر را جذب می‌کنند. اگر میله شیشه‌ای دیگری را با صمغ دیگری مالش دهید و آن دو را جدا از هم قرار دهید و دو میله شیشه‌ای را در کنار هم و دو تکه صمغ را هم کنار هم از نقطه‌ای آویزان کنید می‌بینید که:

  1. دو میله شیشه‌ای یکدیگر را می‌رانند.
  2. هر دو میله شیشه‌ای صمغ را می‌ربایند.
  3. دو تکه صمغ یکدیگر را می‌رانند.

این پدیده‌های ربایش و رانش در هر دو ماده دیگری که مانند شیشه و صمغ باردار شده باشد دقیقا به همین شکل تکرار می‌شود. جسمی که شیشه را براند می‌گوییم به شکل شیشه‌ای باردار شده و اگر جسمی شیشه را جذب کند و صمغ را براند می‌گوییم به شکل صمغی باردار شده است.

امروزه در کاربرد علمی می‌گوییم جسمی که مانند شیشه باردار باشد بار مثبت و اگر مانند صمغ باردار باشد بار منفی دارد این علامت‌گذاری‌ها مانند قراردادهای ریاضی در علامت‌گذاری‌اند. هیچ نیرویی (ربایش یا رانش) بین یک جسم بدون بار و یک جسم باردار وجود ندارد.

در نگاه میکروسکوپی، راه‌های زیادی برای بوجود آمدن جریان الکتریکی وجود دارد مانند حرکت الکترون‌ها، حرکت حفره‌های الکترونی که مانند جابجایی بار مثبت می‌ماند و یا حرکت ذره‌های مثبت یا منفی یونی (یون ها یا هر ذره باردار دیگری در جهت خلاف یکدیگر در برق‌کافت یا پلاسما حرکت می‌کنند). حرکت هرکدام از این ذرات باردار در ماده ایجاد جریان الکتریکی می‌کند و معمولا هم گفته نمی‌شود که ذره در حال جریان بار مثبت حمل می‌کند یا منفی.

خواص

علاوه بر تمام خواص الکترومغناطیسی که از بار الکتریکی گفته شد، بار یک متغیر نسبیتی است به این معنی که هر ذره‌ای که بار Q دارد، مهم نیست که با چه سرعتی حرکت می‌کند، فرض می شود همواره بار Q را حفظ می‌کند. این خاصیت بار بوسیله آزمایش هم نشان داده شده‌است مثلا: بار یک هسته هلیوم (دو پروتون و دو نوترون در مجاورت یکدیگر در هسته اتم با سرعت بسیار زیاد در حال گردش‌اند) برابر است با بار دو هسته دوتریوم (یک پروتون و یک نوترون در مجاورت یکدیگرند که با سرعتی بسیار کمتر از آنچه در هسته هلیوم داشتند حرکت می‌کنند).

پایستگی بار الکتریکی

تمام بار الکتریکی یک سامانه بی‌دررو جدا از اینکه چه اتفاقی در آن بیفتد همواره ثابت باقی می‌ماند. این قانون برای تمام فرایندهای شناخته‌شده در فیزیک تعمیم داده می‌شود هم چنین برای نامتغیرهای گوج درتابع موج برای حالت محلی آن. پایستگی بار، معادله پیوستگی جریان الکتریکی را نتیجه می‌دهد. به شکل عمومی‌تر، بار کل برابر است با انتگرال حجمی V چگالی بار ρ که خود معادل است با انتکرال سطحی چگالی جریان J در سطح بسته S = ∂V که این مقدار جریان خالص I را نتیجه می‌شود:

- \frac{d}{dt} \int_V \rho \, \mathrm{d}V = \iint_{\partial V}\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\;\;\;\subset\!\supset \mathbf J\;\cdot\mathrm{d}\mathbf S = \int J dS \cos\theta = I.

بنابراین پایستگی بار الکتریکی، که با معادله پیوستگی جریان نشان داده شد نتیجه زیر را می‌دهد:

I = \frac{dQ}{dt}.

مقدار بار جابجا‌شده بین زمان‌های ti و tf از انتگرال زیر بدست می‌آید:

Q = \int_{t_{\mathrm{i}}}^{t_{\mathrm{f}}} I\, \mathrm{d}t

که Iجریان کل خروجی از سطح بسته است و Q بار الکتریکی در حجم تعیین شده توسط آن سطح می‌باشد.

کاربرد نیروهای الکتریکی بین اجسام باردار

نیروهای الکتریکی موجود بین اجسام باردار در صنعت کاربردهای زیادی دارند، که از آن جمله می‌توان به رنگ افشانی الکتروستاتیکی، گردنشانی، دود گیری، مرکب پاشی چاپگرها و فتوکپی اشاره کرد. به عنوان مثال در یک دستگاه فتوکپی دانه‌های حامل ماشین با ذرات گرد سیاه رنگی که تونر نام دارد، پوشیده می‌شوند. این ذرات بوسیله نیروهای الکتروستاتیکی به دانه حامل می‌چسبند.

ذرات با بار منفی تونر، سرانجام از دانه‌های حاملشان جدا می‌شوند. جذب این ذرات توسط تصویر با بار مثبت متن مورد نسخه برداری، که بر روی یک غلتک چرخان قرار دارد، صورت می‌گیرد. آنگاه ورقه کاغذ باردار ذرات تونر را روی غلتک جذب می‌کند و بعد از پخته شدن و نشستن ذرات بر روی کاغذ، کپی مورد نظر به‌دست می‌آید.

منبع : ویکی پدیا